找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Principles of Machine Learning; The Three Perspectiv Wenmin Wang Textbook 2025 The Editor(s) (if applicable) and The Author(s), under exclu

[复制链接]
查看: 32383|回复: 35
发表于 2025-3-21 18:30:18 | 显示全部楼层 |阅读模式
书目名称Principles of Machine Learning
副标题The Three Perspectiv
编辑Wenmin Wang
视频video
概述Proposing the three perspectives with their logical and hierarchical relationships to machine learning.Elaborating the historical context, theoretical foundations, and development processes of machine
图书封面Titlebook: Principles of Machine Learning; The Three Perspectiv Wenmin Wang Textbook 2025 The Editor(s) (if applicable) and The Author(s), under exclu
描述.Conducting an in-depth analysis of machine learning, this book proposes three perspectives for studying machine learning: the learning frameworks, learning paradigms, and learning tasks. With this categorization, the learning frameworks reside within the theoretical perspective, the learning paradigms pertain to the methodological perspective, and the learning tasks are situated within the problematic perspective. Throughout the book, a systematic explication of machine learning principles from these three perspectives is provided, interspersed with some examples...The book is structured into four parts, encompassing a total of fifteen chapters. The inaugural part, titled “Perspectives,” comprises two chapters: an introductory exposition and an exploration of the conceptual foundations. The second part, “Frameworks”: subdivided into five chapters, each dedicated to the discussion of five seminal frameworks: probability, statistics, connectionism, symbolism, and behaviorism. Continuing further, the third part, “Paradigms,” encompasses four chapters that explain the three paradigms of supervised learning, unsupervised learning, and reinforcement learning, and narrating several quasi
出版日期Textbook 2025
关键词machine learning; supervised learning; unsupervised learning; reinforcement learning; deep learning
版次1
doihttps://doi.org/10.1007/978-981-97-5333-8
isbn_softcover978-981-97-5335-2
isbn_ebook978-981-97-5333-8
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Principles of Machine Learning影响因子(影响力)




书目名称Principles of Machine Learning影响因子(影响力)学科排名




书目名称Principles of Machine Learning网络公开度




书目名称Principles of Machine Learning网络公开度学科排名




书目名称Principles of Machine Learning被引频次




书目名称Principles of Machine Learning被引频次学科排名




书目名称Principles of Machine Learning年度引用




书目名称Principles of Machine Learning年度引用学科排名




书目名称Principles of Machine Learning读者反馈




书目名称Principles of Machine Learning读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:24:46 | 显示全部楼层
第164495主题贴--第2楼 (沙发)
发表于 2025-3-22 01:18:18 | 显示全部楼层
板凳
发表于 2025-3-22 05:07:26 | 显示全部楼层
第4楼
发表于 2025-3-22 11:03:44 | 显示全部楼层
5楼
发表于 2025-3-22 13:02:20 | 显示全部楼层
6楼
发表于 2025-3-22 19:27:29 | 显示全部楼层
7楼
发表于 2025-3-23 00:53:18 | 显示全部楼层
8楼
发表于 2025-3-23 03:58:10 | 显示全部楼层
9楼
发表于 2025-3-23 09:05:17 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 18:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表