找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents; Alex Kaltenbach Book 2023 The Editor(s) (if applicable) and

[复制链接]
查看: 41439|回复: 35
发表于 2025-3-21 18:12:31 | 显示全部楼层 |阅读模式
书目名称Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents
编辑Alex Kaltenbach
视频video
概述Includes the first proof of the existence of weak solutions of the unsteady p(t,x)-Navier-Stokes equations.Provides a comprehensive review of the rapidly expanding field of unsteady problems with vari
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents;  Alex Kaltenbach Book 2023 The Editor(s) (if applicable) and
描述This book provides a comprehensive analysis of the existence of weak solutions of unsteady problems with variable exponents. The central motivation is the weak solvability of the unsteady p(.,.)-Navier–Stokes equations describing the motion of an incompressible electro-rheological fluid. Due to the variable dependence of the power-law index p(.,.) in this system, the classical weak existence analysis based on the pseudo-monotone operator theory in the framework of Bochner–Lebesgue spaces is not applicable. As a substitute for Bochner–Lebesgue spaces, variable Bochner–Lebesgue spaces are introduced and analyzed. In the mathematical framework of this substitute, the theory of pseudo-monotone operators is extended to unsteady problems with variable exponents, leading to the weak solvability of the unsteady p(.,.)-Navier–Stokes equations under general assumptions..Aimed primarily at graduate readers, the book develops the material step-by-step, starting with the basics of PDE theory andnon-linear functional analysis. The concise introductions at the beginning of each chapter, together with illustrative examples, graphics, detailed derivations of all results and a short summary of the f
出版日期Book 2023
关键词Existence of Weak Solutions; Variable Exponent Lebesgue Spaces; Variable Exponent Bochner-Lebesgue Spa
版次1
doihttps://doi.org/10.1007/978-3-031-29670-3
isbn_softcover978-3-031-29669-7
isbn_ebook978-3-031-29670-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents影响因子(影响力)




书目名称Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents影响因子(影响力)学科排名




书目名称Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents网络公开度




书目名称Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents网络公开度学科排名




书目名称Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents被引频次




书目名称Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents被引频次学科排名




书目名称Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents年度引用




书目名称Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents年度引用学科排名




书目名称Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents读者反馈




书目名称Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:14:02 | 显示全部楼层
第162509主题贴--第2楼 (沙发)
发表于 2025-3-22 01:18:05 | 显示全部楼层
板凳
发表于 2025-3-22 07:51:44 | 显示全部楼层
第4楼
发表于 2025-3-22 10:12:00 | 显示全部楼层
5楼
发表于 2025-3-22 13:07:19 | 显示全部楼层
6楼
发表于 2025-3-22 17:44:10 | 显示全部楼层
7楼
发表于 2025-3-23 01:06:42 | 显示全部楼层
8楼
发表于 2025-3-23 04:31:00 | 显示全部楼层
9楼
发表于 2025-3-23 05:49:17 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 09:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表