书目名称 | Profinite Groups |
编辑 | Luis Ribes,Pavel Zalesskii |
视频video | |
概述 | This second edition contains three new appendices.Contains a new conceptually simpler approach to the proof of some classical subgroup theorems.Contains new results, improved proofs, typographical cor |
丛书名称 | Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics |
图书封面 |  |
描述 | .The aim of this book is to serve both as an introduction to profinite groups and as a reference for specialists in some areas of the theory. The book is reasonably self-contained. Profinite groups are Galois groups. As such they are of interest in algebraic number theory. Much of recent research on abstract infinite groups is related to profinite groups because residually finite groups are naturally embedded in a profinite group. In addition to basic facts about general profinite groups, the book emphasizes free constructions (particularly free profinite groups and the structure of their subgroups). Homology and cohomology is described with a minimum of prerequisites. .This second edition contains three new appendices dealing with a new characterization of free profinite groups, presentations of pro-p groups and a new conceptually simpler approach to the proof of some classical subgroup theorems. Throughout the text there are additions in the form of new results, improved proofs,typographical corrections, and an enlarged bibliography. The list of open questions has been updated; comments and references have been added about those previously open problems that have been solved afte |
出版日期 | Book 2010Latest edition |
关键词 | Galois group; Profinite group; algebra; cohomology; homology; number theory |
版次 | 2 |
doi | https://doi.org/10.1007/978-3-642-01642-4 |
isbn_softcover | 978-3-642-26265-4 |
isbn_ebook | 978-3-642-01642-4Series ISSN 0071-1136 Series E-ISSN 2197-5655 |
issn_series | 0071-1136 |
copyright | Springer-Verlag Berlin Heidelberg 2010 |