找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Polynomial Convexity; Edgar Lee Stout Book 2007 Birkhäuser Boston 2007 Complex analysis.Convexity.Pseudoconvexity.convex hull.functional a

[复制链接]
查看: 44916|回复: 35
发表于 2025-3-21 16:33:51 | 显示全部楼层 |阅读模式
书目名称Polynomial Convexity
编辑Edgar Lee Stout
视频video
概述Distinctive and comprehensive approach to the theory of polynomially convex sets.Examples and counterexamples illustrate complex ideas
丛书名称Progress in Mathematics
图书封面Titlebook: Polynomial Convexity;  Edgar Lee Stout Book 2007 Birkhäuser Boston 2007 Complex analysis.Convexity.Pseudoconvexity.convex hull.functional a
描述This book is devoted to an exposition of the theory of polynomially convex sets.Acompact N subset of C is polynomially convex if it is de?ned by a family, ?nite or in?nite, of polynomial inequalities. These sets play an important role in the theory of functions of several complex variables, especially in questions concerning approximation. On the one hand, the present volume is a study of polynomial convexity per se, on the other, it studies the application of polynomial convexity to other parts of complex analysis, especially to approximation theory and the theory of varieties. N Not every compact subset of C is polynomially convex, but associated with an arbitrary compact set, say X, is its polynomially convex hull, X, which is the intersection of all polynomially convex sets that contain X. Of paramount importance in the study of polynomial convexity is the study of the complementary set X X. The only obvious reason for this set to be nonempty is for it to have some kind of analytic structure, and initially one wonders whether this set always has complex structure in some sense. It is not long before one is disabused of this naive hope; a natural problem then is that of giving
出版日期Book 2007
关键词Complex analysis; Convexity; Pseudoconvexity; convex hull; functional analysis; polynomial convexity; poly
版次1
doihttps://doi.org/10.1007/978-0-8176-4538-0
isbn_ebook978-0-8176-4538-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkhäuser Boston 2007
The information of publication is updating

书目名称Polynomial Convexity影响因子(影响力)




书目名称Polynomial Convexity影响因子(影响力)学科排名




书目名称Polynomial Convexity网络公开度




书目名称Polynomial Convexity网络公开度学科排名




书目名称Polynomial Convexity被引频次




书目名称Polynomial Convexity被引频次学科排名




书目名称Polynomial Convexity年度引用




书目名称Polynomial Convexity年度引用学科排名




书目名称Polynomial Convexity读者反馈




书目名称Polynomial Convexity读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:09:24 | 显示全部楼层
第151338主题贴--第2楼 (沙发)
发表于 2025-3-22 04:05:03 | 显示全部楼层
板凳
发表于 2025-3-22 05:19:08 | 显示全部楼层
第4楼
发表于 2025-3-22 12:21:16 | 显示全部楼层
5楼
发表于 2025-3-22 13:04:05 | 显示全部楼层
6楼
发表于 2025-3-22 18:35:50 | 显示全部楼层
7楼
发表于 2025-3-22 22:23:09 | 显示全部楼层
8楼
发表于 2025-3-23 03:08:11 | 显示全部楼层
9楼
发表于 2025-3-23 06:00:29 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-5 22:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表