找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Periods and Nori Motives; Annette Huber,Stefan Müller-Stach Book 2017 Springer International Publishing AG 2017 Periods.Period Isomorphism

[复制链接]
查看: 35608|回复: 35
发表于 2025-3-21 17:00:34 | 显示全部楼层 |阅读模式
书目名称Periods and Nori Motives
编辑Annette Huber,Stefan Müller-Stach
视频video
概述First book presenting the theory of Nori motives in detail.Studies the Kontsevich–Zagier theory of periods and its relation to mixed motives.Includes full background as well as many examples.Includes
丛书名称Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
图书封面Titlebook: Periods and Nori Motives;  Annette Huber,Stefan Müller-Stach Book 2017 Springer International Publishing AG 2017 Periods.Period Isomorphism
描述This book casts the theory of periods of algebraic varieties in the natural setting of Madhav Nori’s abelian category of mixed motives. It develops Nori’s approach to mixed motives from scratch, thereby filling an important gap in the literature, and then explains the connection of mixed motives to periods, including a detailed account of the theory of period numbers in the sense of Kontsevich-Zagier and their structural properties..Period numbers are central to number theory and algebraic geometry, and also play an important role in other fields such as mathematical physics. There are long-standing conjectures about their transcendence properties, best understood in the language of cohomology of algebraic varieties or, more generally, motives. Readers of this book will discover that Nori’s unconditional construction of an abelian category of motives (over fields embeddable into the complex numbers) is particularly well suited for this purpose. Notably, Kontsevich‘s formal period algebra represents a torsor under the motivic Galois group in Nori‘s sense, and the period conjecture of Kontsevich and Zagier can be recast in this setting..Periods and Nori Motives. is highly informative
出版日期Book 2017
关键词Periods; Period Isomorphism; Motives; de Rham Cohomology; Singular Cohomology; Tannaka Categories; Torsors
版次1
doihttps://doi.org/10.1007/978-3-319-50926-6
isbn_softcover978-3-319-84524-1
isbn_ebook978-3-319-50926-6Series ISSN 0071-1136 Series E-ISSN 2197-5655
issn_series 0071-1136
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Periods and Nori Motives影响因子(影响力)




书目名称Periods and Nori Motives影响因子(影响力)学科排名




书目名称Periods and Nori Motives网络公开度




书目名称Periods and Nori Motives网络公开度学科排名




书目名称Periods and Nori Motives被引频次




书目名称Periods and Nori Motives被引频次学科排名




书目名称Periods and Nori Motives年度引用




书目名称Periods and Nori Motives年度引用学科排名




书目名称Periods and Nori Motives读者反馈




书目名称Periods and Nori Motives读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:38:30 | 显示全部楼层
第144088主题贴--第2楼 (沙发)
发表于 2025-3-22 02:08:07 | 显示全部楼层
板凳
发表于 2025-3-22 06:25:09 | 显示全部楼层
第4楼
发表于 2025-3-22 08:49:11 | 显示全部楼层
5楼
发表于 2025-3-22 16:46:13 | 显示全部楼层
6楼
发表于 2025-3-22 18:03:02 | 显示全部楼层
7楼
发表于 2025-3-22 22:58:42 | 显示全部楼层
8楼
发表于 2025-3-23 02:15:54 | 显示全部楼层
9楼
发表于 2025-3-23 07:32:32 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-7 14:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表