找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Operational Modal Analysis; Modeling, Bayesian I Siu-Kui Au Book 2017 Springer Nature Singapore Pte Ltd. 2017 OMA.Bayesian Modal Identifica

[复制链接]
楼主: FLAW
发表于 2025-3-23 09:49:31 | 显示全部楼层
发表于 2025-3-23 15:43:03 | 显示全部楼层
发表于 2025-3-23 19:16:18 | 显示全部楼层
Siu-Kui Au challenges in smartphone-based HAR, such as device location and subject dependency, and manual feature extraction. We showed that the CNN model accomplished location- and subject-independent recognition with overall accuracy of 98.38% and 90.61%, respectively. The LSTM model also performed location
发表于 2025-3-24 00:18:17 | 显示全部楼层
发表于 2025-3-24 02:43:52 | 显示全部楼层
发表于 2025-3-24 10:34:29 | 显示全部楼层
发表于 2025-3-24 12:38:08 | 显示全部楼层
Siu-Kui Auffers the solution to overcome this issue. We propose two deep learning models which are long-short-term memory only (LSTM-only) and the combination of convolutional neural networks and LSTM (CNN-LSTM) for intrusion detection system. Both proposed methods achieve better accuracy than that of the exi
发表于 2025-3-24 17:03:08 | 显示全部楼层
challenges in smartphone-based HAR, such as device location and subject dependency, and manual feature extraction. We showed that the CNN model accomplished location- and subject-independent recognition with overall accuracy of 98.38% and 90.61%, respectively. The LSTM model also performed location
发表于 2025-3-24 20:30:43 | 显示全部楼层
发表于 2025-3-24 23:46:29 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-8 08:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表