找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Natural Language Processing and Chinese Computing; 13th National CCF Co Derek F. Wong,Zhongyu Wei,Muyun Yang Conference proceedings 2025 Th

[复制链接]
楼主: 纪念性
发表于 2025-3-23 10:41:09 | 显示全部楼层
Chinese Personalized Commonsense Understanding and Reasoning Based on Curriculum-Learning BERT, GPT2, and BART with different structures. The experimental results show that the models trained using the curriculum-learning training framework are able to generate more diversified and personality-trait-compliant commonsense reasoning results.
发表于 2025-3-23 16:54:13 | 显示全部楼层
发表于 2025-3-23 20:30:40 | 显示全部楼层
发表于 2025-3-24 00:36:11 | 显示全部楼层
ConFit: Contrastive Fine-Tuning of Text-to-Text Transformer for Relation Classificationd on their context. The latest trend for dealing with the task resorts to pre-trained language models (PLMs). It transforms the discriminative RC into a linguistics problem and fully induces the language knowledge PLMs derived from pre-training. Despite the visible progress, existing approaches hand
发表于 2025-3-24 04:55:33 | 显示全部楼层
发表于 2025-3-24 08:03:59 | 显示全部楼层
发表于 2025-3-24 11:10:25 | 显示全部楼层
发表于 2025-3-24 18:01:51 | 显示全部楼层
An Iterative Framework for Document-Level Event Argument Extraction Assisted by Long Short-Term Memot structure is complex. Most of the current methods are entity-based classification or generative frameworks, facing significant challenges when dealing with argument types that are not entities and handling complex event types. In this paper, we propose an iterative extraction framework for DEAE, w
发表于 2025-3-24 23:04:28 | 显示全部楼层
发表于 2025-3-25 02:27:14 | 显示全部楼层
Prompt Debiasing via Causal Intervention for Event Argument Extractionnarios. By formatting a fine-tuning task into a pre-training objective, prompt-based methods resolve the data scarce problem effectively. However, previous researches seldom investigate the discrepancy among different strategies on prompt formulation. In this work, we compare two kinds of prompts, n
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 23:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表