找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations; Mitsuhiro T. Nakao,Michael Plum,Yoshitaka

[复制链接]
楼主: antibody
发表于 2025-3-26 22:10:52 | 显示全部楼层
发表于 2025-3-27 04:15:33 | 显示全部楼层
Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations
发表于 2025-3-27 08:45:54 | 显示全部楼层
发表于 2025-3-27 09:29:04 | 显示全部楼层
Infinite-Dimensional Newton-Type Methodpplying the same principle as in Chaps. 1 and 2. After that, we confirm the existence of solutions by proving the contractility of the infinite-dimensional Newton-like operator with a residual form. Note that a projection into a finite-dimensional subspace and constructive error estimates of the projection play important and essential roles.
发表于 2025-3-27 17:39:17 | 显示全部楼层
Basic Principle of the Verificationl improvements have since been made. This method consists of a projection and error estimations by the effective use of the compactness property of the relevant operator, and it can be represented in a rather generalized form in the examples below.
发表于 2025-3-27 20:52:04 | 显示全部楼层
发表于 2025-3-28 01:29:43 | 显示全部楼层
发表于 2025-3-28 04:06:41 | 显示全部楼层
Other Problem Typesf second-order elliptic boundary value problems, where the linearized operator . lacks symmetry, whence a norm bound for .. cannot be computed via the spectrum of . or ....In this chapter we concentrate on the main ideas and partially will be a bit less extensive with technical details.
发表于 2025-3-28 08:30:48 | 显示全部楼层
Eigenvalue Bounds for Self-Adjoint Eigenvalue Problemssical application is quantum physics, but also other fields like electro-dynamics (including optics) or statistical mechanics are governed by partial differential operators and related eigenvalue problems.
发表于 2025-3-28 12:50:31 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 08:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表