找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Numerical Python; Scientific Computing Robert Johansson Book 20192nd edition Robert Johansson 2019 Python.numerical.NumPy.SciPy.computation

[复制链接]
楼主: centipede
发表于 2025-3-28 17:50:06 | 显示全部楼层
发表于 2025-3-28 18:59:36 | 显示全部楼层
le I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning978-1-4842-4246-9
发表于 2025-3-28 23:17:38 | 显示全部楼层
Integration,grals (double integrals) and higher-order integrals can be numerically computed with repeated single-dimension integration or using methods that are multidimensional generalizations of the techniques used to solve single-dimensional integrals. However, the computational complexity grows quickly with
发表于 2025-3-29 06:18:48 | 显示全部楼层
发表于 2025-3-29 07:38:32 | 显示全部楼层
Data Processing and Analysis,ch, the . library has become a de facto standard library for high-level data processing in Python, especially for statistics applications. The . library itself contains only limited support for statistical modeling (namely, linear regression). For more involved statistical analysis and modeling, the
发表于 2025-3-29 12:05:51 | 显示全部楼层
Statistics, of statistics, albeit not all, while also providing the unique advantages of the Python programming language and its environment. The pandas library that we discussed in Chapter . is an example of a development within the Python community that was strongly influenced by statistical software, with t
发表于 2025-3-29 19:08:58 | 显示全部楼层
发表于 2025-3-29 23:40:34 | 显示全部楼层
Book 20192nd editionng techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning
发表于 2025-3-30 03:53:05 | 显示全部楼层
发表于 2025-3-30 04:05:09 | 显示全部楼层
7楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 11:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表