找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Numerical Partial Differential Equations: Finite Difference Methods; J. W. Thomas Textbook 1995 Springer Science+Business Media New York 1

[复制链接]
查看: 51154|回复: 44
发表于 2025-3-21 17:49:05 | 显示全部楼层 |阅读模式
书目名称Numerical Partial Differential Equations: Finite Difference Methods
编辑J. W. Thomas
视频video
丛书名称Texts in Applied Mathematics
图书封面Titlebook: Numerical Partial Differential Equations: Finite Difference Methods;  J. W. Thomas Textbook 1995 Springer Science+Business Media New York 1
描述This text will be divided into two books which cover the topic of numerical partial differential equations. Of the many different approaches to solving partial differential equations numerically, this book studies difference methods. Written for the beginning graduate student, this text offers a means of coming out of a course with a large number of methods which provide both theoretical knowledge and numerical experience. The reader will learn that numerical experimentation is a part of the subject of numerical solution of partial differential equations, and will be shown some uses and taught some techniques of numerical experimentation.
出版日期Textbook 1995
关键词YellowSale2006; adopted-textbook; differential equation; hyperbolic equation; partial differential equat
版次1
doihttps://doi.org/10.1007/978-1-4899-7278-1
isbn_softcover978-1-4419-3105-4
isbn_ebook978-1-4899-7278-1Series ISSN 0939-2475 Series E-ISSN 2196-9949
issn_series 0939-2475
copyrightSpringer Science+Business Media New York 1995
The information of publication is updating

书目名称Numerical Partial Differential Equations: Finite Difference Methods影响因子(影响力)




书目名称Numerical Partial Differential Equations: Finite Difference Methods影响因子(影响力)学科排名




书目名称Numerical Partial Differential Equations: Finite Difference Methods网络公开度




书目名称Numerical Partial Differential Equations: Finite Difference Methods网络公开度学科排名




书目名称Numerical Partial Differential Equations: Finite Difference Methods被引频次




书目名称Numerical Partial Differential Equations: Finite Difference Methods被引频次学科排名




书目名称Numerical Partial Differential Equations: Finite Difference Methods年度引用




书目名称Numerical Partial Differential Equations: Finite Difference Methods年度引用学科排名




书目名称Numerical Partial Differential Equations: Finite Difference Methods读者反馈




书目名称Numerical Partial Differential Equations: Finite Difference Methods读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:50:10 | 显示全部楼层
发表于 2025-3-22 02:33:47 | 显示全部楼层
Stability,ity of difference schemes. This is done largely by introducing tools that can be used to prove stability of difference schemes, such as the discrete Fourier transform, the Gerschgorin Circle Theorem and an assortment of basic propositions.
发表于 2025-3-22 05:13:15 | 显示全部楼层
发表于 2025-3-22 10:03:21 | 显示全部楼层
发表于 2025-3-22 16:16:12 | 显示全部楼层
https://doi.org/10.1007/978-1-4899-7278-1YellowSale2006; adopted-textbook; differential equation; hyperbolic equation; partial differential equat
发表于 2025-3-22 20:29:05 | 显示全部楼层
发表于 2025-3-22 21:13:54 | 显示全部楼层
Systems of Partial Differential Equations,As we discussed earlier, many applications of partial differential equations involve systems of partial differential equations. The approach that we used in the introduction to Chapter 5 was to uncouple a system to motivate the importance of the model equation..
发表于 2025-3-23 03:48:10 | 显示全部楼层
Prelude,ing aspects of that problem. Often, the mathematical aspects of numerical partial differential equations can be developed without considering applications or computing, but experience shows that this approach does not generally yield useful results.
发表于 2025-3-23 09:05:55 | 显示全部楼层
0939-2475 ll learn that numerical experimentation is a part of the subject of numerical solution of partial differential equations, and will be shown some uses and taught some techniques of numerical experimentation.978-1-4419-3105-4978-1-4899-7278-1Series ISSN 0939-2475 Series E-ISSN 2196-9949
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 07:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表