找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Numerical Optimization; Theoretical and Prac J. Frédéric Bonnans,J. Charles Gilbert,Claudia A. Textbook 20031st edition Springer-Verlag Be

[复制链接]
楼主: Fixate
发表于 2025-3-30 11:42:56 | 显示全部楼层
发表于 2025-3-30 13:25:38 | 显示全部楼层
J. Frédéric Bonnans,J. Charles Gilbert,Claude Lemaréchal,Claudia A. Sagastizábal by the authorsThe emergence of topological quantum ?eld theory has been one of the most important breakthroughs which have occurred in the context of ma- ematical physics in the last century, a century characterizedbyindependent developments of the main ideas in both disciplines, physics and mathem
发表于 2025-3-30 20:31:52 | 显示全部楼层
发表于 2025-3-31 00:38:48 | 显示全部楼层
发表于 2025-3-31 04:25:19 | 显示全部楼层
General Introductiont will be the usual dot-product: .); | · | or ∥ · ∥ will denote the associated norm. The . (vector of partial derivatives) of a function .: ℝ. → ℝ will be denoted by ∇ . or .′; the . (matrix of second derivatives) by ∇.. or .″. We will also use continually the notation .(.) = .′(.).
发表于 2025-3-31 07:51:20 | 显示全部楼层
Line-Searches be studied in the next chapters), we focus on the computation of the stepsize. Here appear the most serious practical difficulties, while directions are generally easy to compute, once the theory is well-mastered. A firm experience is required to write a good computer code for line-searches, which
发表于 2025-3-31 11:36:46 | 显示全部楼层
Conjugate Gradientith symmetric positive definite matrix (or, equivalently, to minimize in . iterations a quadratic strongly convex function on ℝ.), without storing an additional matrix, without even storing the matrix of the system. In fact, to solve . + . = 0 (. symmetric positive definite), the conjugate gradient
发表于 2025-3-31 14:14:30 | 显示全部楼层
Special Methodsmely important, and might supersede line-searches, sooner or later. The other methods deal with the direction; they are either classical (Gauss-Newton) or recent (limited-memory quasi-Newton, truncated Newton) and apply only in some well-defined subclasses of problems.
发表于 2025-3-31 19:59:53 | 显示全部楼层
发表于 2025-4-1 00:31:26 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 07:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表