用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Numerical Integration of Space Fractional Partial Differential Equations; Vol 2 - Applications Younes Salehi,William E. Schiesser Book 2018

[复制链接]
查看: 35594|回复: 35
发表于 2025-3-21 18:05:57 | 显示全部楼层 |阅读模式
书目名称Numerical Integration of Space Fractional Partial Differential Equations
副标题Vol 2 - Applications
编辑Younes Salehi,William E. Schiesser
视频video
丛书名称Synthesis Lectures on Mathematics & Statistics
图书封面Titlebook: Numerical Integration of Space Fractional Partial Differential Equations; Vol 2 - Applications Younes Salehi,William E. Schiesser Book 2018
描述

Partial differential equations (PDEs) are one of the most used widely forms of mathematics in science and engineering. PDEs can have partial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development and use of SFPDEs, with the discussion divided as:

  • Vol 1: Introduction to Algorithms and Computer Coding in R
  • Vol 2: Applications from Classical Integer PDEs.
  • Various definitions of space fractional derivatives have been proposed. We focus on the Caputo derivative, with occasional reference to the Riemann-Liouville derivative.

    In the second volume, the emphasis is on applications of SFPDEs developed mainly through the extension of classical integer PDEs to SFPDEs. The example applications are:

    • Fractional diffusion equation with Dirichlet, Neumann and Robin boundary conditions.
    • Fisher-Kolmogorov SFPDE
    • 出版日期Book 2018
      版次1
      doihttps://doi.org/10.1007/978-3-031-02412-2
      isbn_softcover978-3-031-01284-6
      isbn_ebook978-3-031-02412-2Series ISSN 1938-1743 Series E-ISSN 1938-1751
      issn_series 1938-1743
      copyrightSpringer Nature Switzerland AG 2018
      The information of publication is updating

      书目名称Numerical Integration of Space Fractional Partial Differential Equations影响因子(影响力)




      书目名称Numerical Integration of Space Fractional Partial Differential Equations影响因子(影响力)学科排名




      书目名称Numerical Integration of Space Fractional Partial Differential Equations网络公开度




      书目名称Numerical Integration of Space Fractional Partial Differential Equations网络公开度学科排名




      书目名称Numerical Integration of Space Fractional Partial Differential Equations被引频次




      书目名称Numerical Integration of Space Fractional Partial Differential Equations被引频次学科排名




      书目名称Numerical Integration of Space Fractional Partial Differential Equations年度引用




      书目名称Numerical Integration of Space Fractional Partial Differential Equations年度引用学科排名




      书目名称Numerical Integration of Space Fractional Partial Differential Equations读者反馈




      书目名称Numerical Integration of Space Fractional Partial Differential Equations读者反馈学科排名




      单选投票, 共有 0 人参与投票
       

      0票 0%

      Perfect with Aesthetics

       

      0票 0%

      Better Implies Difficulty

       

      0票 0%

      Good and Satisfactory

       

      0票 0%

      Adverse Performance

       

      0票 0%

      Disdainful Garbage

      您所在的用户组没有投票权限
      发表于 2025-3-21 22:27:36 | 显示全部楼层
      发表于 2025-3-22 01:59:10 | 显示全部楼层
      Numerical Integration of Space Fractional Partial Differential Equations978-3-031-02412-2Series ISSN 1938-1743 Series E-ISSN 1938-1751
      发表于 2025-3-22 05:23:46 | 显示全部楼层
      Book 2018tives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development
      发表于 2025-3-22 12:15:43 | 显示全部楼层
      1938-1743 ial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the d
      发表于 2025-3-22 15:36:01 | 显示全部楼层
      Book 2018phasis is on applications of SFPDEs developed mainly through the extension of classical integer PDEs to SFPDEs. The example applications are:

      • Fractional diffusion equation with Dirichlet, Neumann and Robin boundary conditions.
      • Fisher-Kolmogorov SFPDE
      • 发表于 2025-3-22 19:00:41 | 显示全部楼层
        Numerical Integration of Space Fractional Partial Differential EquationsVol 2 - Applications
        发表于 2025-3-22 23:57:08 | 显示全部楼层
        1938-1743 :

        • Fractional diffusion equation with Dirichlet, Neumann and Robin boundary conditions.
        • Fisher-Kolmogorov SFPDE
        • 发表于 2025-3-23 04:02:22 | 显示全部楼层
          Younes Salehi,William E. Schiesser in Molecular Biology™. series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, provide step-by-step laboratory protocols, and key tips on troubl978-1-4939-6244-0978-1-62703-308-4Series ISSN 1064-3745 Series E-ISSN 1940-6029
          发表于 2025-3-23 06:52:30 | 显示全部楼层
          in Molecular Biology™. series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, provide step-by-step laboratory protocols, and key tips on troubl978-1-4939-6244-0978-1-62703-308-4Series ISSN 1064-3745 Series E-ISSN 1940-6029
           关于派博传思  派博传思旗下网站  友情链接
          派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
          发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
          |Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 11:11
          Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
          快速回复 返回顶部 返回列表