找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Numerical Ecology with R; Daniel Borcard,François Gillet,Pierre Legendre Book 2018Latest edition Springer International Publishing AG, par

[复制链接]
查看: 13557|回复: 40
发表于 2025-3-21 18:43:44 | 显示全部楼层 |阅读模式
书目名称Numerical Ecology with R
编辑Daniel Borcard,François Gillet,Pierre Legendre
视频video
概述Offers an up-to-date, practical guide to numerical ecology from leaders in the field.Provides complete data sets, functions and scripts.Includes examples with extensive commentaries
丛书名称Use R!
图书封面Titlebook: Numerical Ecology with R;  Daniel Borcard,François Gillet,Pierre Legendre Book 2018Latest edition Springer International Publishing AG, par
描述.This new edition of .Numerical Ecology with R. guides readers through an applied exploration of the major methods of multivariate data analysis, as seen through the eyes of three ecologists. It provides a bridge between a textbook of numerical ecology and the implementation of this discipline in the R language. The book begins by examining some exploratory approaches. It proceeds logically with the construction of the key building blocks of most methods, i.e. association measures and matrices, and then submits example data to three families of approaches: clustering, ordination and canonical ordination. The last two chapters make use of these methods to explore important and contemporary issues in ecology: the analysis of spatial structures and of community diversity. The aims of methods thus range from descriptive to explanatory and predictive and encompass a wide variety of approaches that should provide readers with an extensive toolbox that can address a wide palette of questions arising in contemporary multivariate ecological analysis. The second edition of this book features a complete revision to the R code and offers improved procedures and more diverse applications of the
出版日期Book 2018Latest edition
关键词Numerical Ecology; R Language; R Code; Ecology; Environmental Science; Data Analysis; Cluster Analysis; Unc
版次2
doihttps://doi.org/10.1007/978-3-319-71404-2
isbn_softcover978-3-319-71403-5
isbn_ebook978-3-319-71404-2Series ISSN 2197-5736 Series E-ISSN 2197-5744
issn_series 2197-5736
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

书目名称Numerical Ecology with R影响因子(影响力)




书目名称Numerical Ecology with R影响因子(影响力)学科排名




书目名称Numerical Ecology with R网络公开度




书目名称Numerical Ecology with R网络公开度学科排名




书目名称Numerical Ecology with R被引频次




书目名称Numerical Ecology with R被引频次学科排名




书目名称Numerical Ecology with R年度引用




书目名称Numerical Ecology with R年度引用学科排名




书目名称Numerical Ecology with R读者反馈




书目名称Numerical Ecology with R读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:32:55 | 显示全部楼层
发表于 2025-3-22 04:20:48 | 显示全部楼层
Cluster Analysis,arious clustering methods and compute them, apply these techniques to the Doubs River data to identify groups of sites and fish species. You will also explore two methods of constrained clustering, a powerful modelling approach where the clustering process is constrained by an external data set.
发表于 2025-3-22 07:07:55 | 显示全部楼层
发表于 2025-3-22 11:02:59 | 显示全部楼层
发表于 2025-3-22 15:09:33 | 显示全部楼层
Spatial Analysis of Ecological Data,test and interpret scale-dependent spatial structures; combine spatial analysis and variation partitioning; and assess spatial structures in canonical ordinations by computing variograms of explained and residual ordination scores.
发表于 2025-3-22 19:28:53 | 显示全部楼层
发表于 2025-3-22 21:19:41 | 显示全部楼层
Exploratory Data Analysis,arn some EDA techniques that are frequently applied to multidimensional ecological data and explore the Doubs dataset in hydrobiology as a first worked example, using . functions mostly found in standard packages.
发表于 2025-3-23 03:40:04 | 显示全部楼层
Unconstrained Ordination, or the Oribatid mite data; overlay the result of a cluster analysis on an ordination diagram to improve the interpretation of both analyses; interpret the structures revealed by the ordination of the species data using the environmental variables from a second dataset; and finally write your own PCA function.
发表于 2025-3-23 06:45:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 19:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表