找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Numerical Bifurcation Analysis for Reaction-Diffusion Equations; Zhen Mei Book 2000 Springer-Verlag Berlin Heidelberg 2000 Numerics.Numeri

[复制链接]
楼主: CANTO
发表于 2025-3-23 11:23:46 | 显示全部楼层
发表于 2025-3-23 16:10:06 | 显示全部楼层
Numerical Bifurcation Analysis for Reaction-Diffusion Equations
发表于 2025-3-23 19:04:06 | 显示全部楼层
0179-3632 , an analytical bifurcation analysis is possible only for exceptional cases. This book is devoted to nu­ merical analysis of bifurcation problems in reaction-diffusion equations. The aim is to pursue a systematic investigation of generic bifurcations a978-3-642-08669-4978-3-662-04177-2Series ISSN 0179-3632 Series E-ISSN 2198-3712
发表于 2025-3-23 22:13:29 | 显示全部楼层
发表于 2025-3-24 04:56:19 | 显示全部楼层
发表于 2025-3-24 07:59:47 | 显示全部楼层
发表于 2025-3-24 13:03:27 | 显示全部楼层
发表于 2025-3-24 17:28:54 | 显示全部楼层
Book 2000e. g. temperature, catalyst and diffusion rate, etc. Moreover, they form normally a nonlinear dissipative system, coupled by reaction among differ­ ent substances. The number and stability of solutions of a reaction-diffusion system may change abruptly with variation of the control parameters. Cor­
发表于 2025-3-24 20:03:43 | 显示全部楼层
发表于 2025-3-25 02:08:13 | 显示全部楼层
Center Manifold Theory,al system. The center manifold theorem was introduced in the sixties by Pliss [243] and Kelley [182]. Owing to the Lanford’s contribution [198] this theory has been applied extensively to the study of bifurcation problems and dynamical systems, in particular, in connection with the normal form theory.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 11:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表