找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Number Theory; Tradition and Modern Wenpeng Zhang,Yoshio Tanigawa Conference proceedings 2006 Springer-Verlag US 2006 Congruences.Exponenti

[复制链接]
楼主: 凝固
发表于 2025-3-25 05:21:57 | 显示全部楼层
发表于 2025-3-25 11:31:22 | 显示全部楼层
发表于 2025-3-25 15:31:32 | 显示全部楼层
Zhen Cui Fredholm theory of elliptic differential operators. The last Sect. 10.4 deals with a characterization of pairs of differential operators with constant coefficients which obey the dominance property between .2 and its weighted counterpart.
发表于 2025-3-25 16:18:28 | 显示全部楼层
发表于 2025-3-25 20:58:29 | 显示全部楼层
发表于 2025-3-26 01:58:33 | 显示全部楼层
Conference proceedings 2006number theory is elaborated. The book emphasizes a few common features such as functional equations for various zeta-functions, modular forms, congruence conditions, exponential sums, and algorithmic aspects. .
发表于 2025-3-26 05:26:23 | 显示全部楼层
发表于 2025-3-26 09:38:25 | 显示全部楼层
On the Hilbert-Kamke and the Vinogradov Problems in Additive Number Theory, (mean values of) trigonometrical sums and find the exponent of convergence of the associated singular integrals. We shall also state the corresponding results on the multivariate version of these problems.
发表于 2025-3-26 16:22:39 | 显示全部楼层
Some Aspects of the Modular Relation,ting the functional equation to the .-series (or vice versa) in §2, while §3 and §4 are devoted to elucidate the location of the partial fraction expansion of the coth (cot, respectively) in the modular relation framework.
发表于 2025-3-26 17:57:43 | 显示全部楼层
Cubic Fields and Mordell Curves,P(.). It is also pointed out that .(.(.)) is essentially dependent on the polynomial .(.) rather than the cubic field ℚ(ξ) even though .[ℚ] is completely described by the subset .(ξ) of the cubic field.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 10:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表