找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Number Systems for Deep Neural Network Architectures; Ghada Alsuhli,Vasilis Sakellariou,Thanos Stouraiti Book 2024 The Editor(s) (if appli

[复制链接]
查看: 52935|回复: 42
发表于 2025-3-21 18:51:45 | 显示全部楼层 |阅读模式
书目名称Number Systems for Deep Neural Network Architectures
编辑Ghada Alsuhli,Vasilis Sakellariou,Thanos Stouraiti
视频video
概述Explores different design aspects associated with each number system and their effects on DNN performance.Discusses the most efficient number systems for DNNs hardware realization.Describes various nu
丛书名称Synthesis Lectures on Engineering, Science, and Technology
图书封面Titlebook: Number Systems for Deep Neural Network Architectures;  Ghada Alsuhli,Vasilis Sakellariou,Thanos Stouraiti Book 2024 The Editor(s) (if appli
描述.This book provides readers a comprehensive introduction to alternative number systems for more efficient representations of Deep Neural Network (DNN) data. Various number systems (conventional/unconventional) exploited for DNNs are discussed, including Floating Point (FP), Fixed Point (FXP), Logarithmic Number System (LNS), Residue Number System (RNS), Block Floating Point Number System (BFP), Dynamic Fixed-Point Number System (DFXP) and Posit Number System (PNS). The authors explore the impact of these number systems on the performance and hardware design of DNNs, highlighting the challenges associated with each number system and various solutions that are proposed for addressing them..
出版日期Book 2024
关键词deep neural network number representation; deep neural network accelerators; deep neural network archi
版次1
doihttps://doi.org/10.1007/978-3-031-38133-1
isbn_softcover978-3-031-38135-5
isbn_ebook978-3-031-38133-1Series ISSN 2690-0300 Series E-ISSN 2690-0327
issn_series 2690-0300
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Number Systems for Deep Neural Network Architectures影响因子(影响力)




书目名称Number Systems for Deep Neural Network Architectures影响因子(影响力)学科排名




书目名称Number Systems for Deep Neural Network Architectures网络公开度




书目名称Number Systems for Deep Neural Network Architectures网络公开度学科排名




书目名称Number Systems for Deep Neural Network Architectures被引频次




书目名称Number Systems for Deep Neural Network Architectures被引频次学科排名




书目名称Number Systems for Deep Neural Network Architectures年度引用




书目名称Number Systems for Deep Neural Network Architectures年度引用学科排名




书目名称Number Systems for Deep Neural Network Architectures读者反馈




书目名称Number Systems for Deep Neural Network Architectures读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:13:26 | 显示全部楼层
发表于 2025-3-22 04:20:17 | 显示全部楼层
发表于 2025-3-22 08:30:15 | 显示全部楼层
发表于 2025-3-22 10:28:21 | 显示全部楼层
978-3-031-38135-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-22 14:23:53 | 显示全部楼层
发表于 2025-3-22 19:56:51 | 显示全部楼层
,DFXP for DNN Architectures, floating point systems highlighting their similarities and differences. In addition, we review existing DNN architectures that use DFXP and compare their performance. Additionally, we discuss the various factors that impact DNN performance when using DFXP and explore different approaches for determining the optimal settings of these factors.
发表于 2025-3-23 00:36:01 | 显示全部楼层
Ghada Alsuhli,Vasilis Sakellariou,Thanos StouraitiExplores different design aspects associated with each number system and their effects on DNN performance.Discusses the most efficient number systems for DNNs hardware realization.Describes various nu
发表于 2025-3-23 02:51:55 | 显示全部楼层
Conventional Number Systems for DNN Architectures,two representations and briefly discusses their utilization for implementing DNN hardware, in order to facilitate a comparison between conventional and unconventional number systems presented in subsequent chapters.
发表于 2025-3-23 08:57:31 | 显示全部楼层
,RNS for DNN Architectures, and multiplication become smaller and can operate on higher frequencies and with lower power consumption. In this Chapter, the basic RNS arithmetic operations and their hardware implementation are described. Moreover, RNS-based DNN architectures reported in the literature are presented and compared.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-18 22:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表