找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Normalization of Multidimensional Data for Multi-Criteria Decision Making Problems; Inversion, Displacem Irik Z. Mukhametzyanov Book 2023 T

[复制链接]
楼主: Coenzyme
发表于 2025-3-25 06:56:05 | 显示全部楼层
978-3-031-33839-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-25 08:26:00 | 显示全部楼层
Normalization of Multidimensional Data for Multi-Criteria Decision Making Problems978-3-031-33837-3Series ISSN 0884-8289 Series E-ISSN 2214-7934
发表于 2025-3-25 12:54:44 | 显示全部楼层
Introduction,A person in his activity is constantly faced with situations in which he has to make a choice from several options (alternatives, objects). Typical situations of multi-criteria choice:
发表于 2025-3-25 18:54:29 | 显示全部楼层
International Series in Operations Research & Management Sciencehttp://image.papertrans.cn/n/image/668076.jpg
发表于 2025-3-25 21:56:17 | 显示全部楼层
发表于 2025-3-26 00:55:50 | 显示全部楼层
Irik Z. MukhametzyanovProvides a systematic review of multidimensional normalization methods.Includes multi-step normalization to manage data inversion method.Introduces domain displacement of normalized values and data as
发表于 2025-3-26 05:47:28 | 显示全部楼层
Normalization and MCDM Rank Model,non-linear normalization to eliminate the asymmetry of the original data is discussed. Examples of weak and high sensitivity of the decision from the choice of the normalization method are shown, due to the priorities of alternatives according to individual criteria.
发表于 2025-3-26 09:42:16 | 显示全部楼层
发表于 2025-3-26 16:00:08 | 显示全部楼层
The MCDM Rank Model,ents of criteria, methods for aggregating private attributes within the framework of the MCDM rank model is presented. Given the multi-variance of methods and the absence of formalized criteria for their choice, the consistency of the solution for various MCDM models increases the reliability of the solution.
发表于 2025-3-26 20:20:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 13:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表