找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Nonstandard Analysis, Axiomatically; Vladimir Kanovei,Michael Reeken Book 2004 Springer-Verlag Berlin Heidelberg 2004 Nonstandard.ZFC.calc

[复制链接]
楼主: Inoculare
发表于 2025-3-23 11:55:25 | 显示全部楼层
发表于 2025-3-23 16:46:35 | 显示全部楼层
orization, optimal vectorization of multiple statement loops, and synchronization problems with multi-tasking.Detailed Gantt charts are provided to guide the reader through the timing issues. 978-0-387-97089-9978-0-387-34787-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-23 19:43:55 | 显示全部楼层
发表于 2025-3-24 01:07:28 | 显示全部楼层
发表于 2025-3-24 03:10:07 | 显示全部楼层
Theories of internal sets,contains many typically nonstandard objects like infinitely large or infinitesimal numbers (see Chapter 2). It will be demonstrated (Theorem 3.1.8) that 〈⌷ ; ∈, st〉 satisfies the axioms of .. a variant of Nelson’s internal set theory ..
发表于 2025-3-24 10:05:18 | 显示全部楼层
发表于 2025-3-24 10:54:50 | 显示全部楼层
发表于 2025-3-24 16:48:40 | 显示全部楼层
Partially saturated universes and the Power Set problem,provides us with a unique universe | of all internal sets, saturated in a certain maximally possible way, and embedded in the external universe H of all sets. This may appear too boring for a specialist accustomed to deal with peculiar nonstandard models with sometimes hardly achievable properties.
发表于 2025-3-24 22:19:51 | 显示全部楼层
Forcing extensions of the nonstandard universe,m 5.5.8 implies that it is consistent with . that I-infinite internal sets of different I-cardinalities are necessarily non-equinumerous. It would be in the spirit of mathematical foundations to ask whether the negation of this sentence, that is the existence of equinumerous I-infinite internal sets
发表于 2025-3-25 03:12:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 23:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表