找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Nonlinear Time Series; Nonparametric and Pa Jianqing Fan,Qiwei Yao Book 2003 Springer-Verlag New York 2003 Time series.econometrics.linear

[复制链接]
查看: 15195|回复: 47
发表于 2025-3-21 17:32:57 | 显示全部楼层 |阅读模式
书目名称Nonlinear Time Series
副标题Nonparametric and Pa
编辑Jianqing Fan,Qiwei Yao
视频video
丛书名称Springer Series in Statistics
图书封面Titlebook: Nonlinear Time Series; Nonparametric and Pa Jianqing Fan,Qiwei Yao Book 2003 Springer-Verlag New York 2003 Time series.econometrics.linear
描述Amongmanyexcitingdevelopmentsinstatisticsoverthelasttwodecades, nonlineartimeseriesanddata-analyticnonparametricmethodshavegreatly advanced along seemingly unrelated paths. In spite of the fact that the - plication of nonparametric techniques in time series can be traced back to the 1940s at least, there still exists healthy and justi?ed skepticism about the capability of nonparametric methods in time series analysis. As - thusiastic explorers of the modern nonparametric toolkit, we feel obliged to assemble together in one place the newly developed relevant techniques. Theaimofthisbookistoadvocatethosemodernnonparametrictechniques that have proven useful for analyzing real time series data, and to provoke further research in both methodology and theory for nonparametric time series analysis. Modern computers and the information age bring us opportunities with challenges. Technological inventions have led to the explosion in data c- lection (e.g., daily grocery sales, stock market trading, microarray data). The Internet makes big data warehouses readily accessible. Although cl- sic parametric models, which postulate global structures for underlying systems, are still very useful, la
出版日期Book 2003
关键词Time series; econometrics; linear optimization; mathematical statistics; modeling; nonparametric methods;
版次1
doihttps://doi.org/10.1007/978-0-387-69395-8
isbn_softcover978-0-387-26142-3
isbn_ebook978-0-387-69395-8Series ISSN 0172-7397 Series E-ISSN 2197-568X
issn_series 0172-7397
copyrightSpringer-Verlag New York 2003
The information of publication is updating

书目名称Nonlinear Time Series影响因子(影响力)




书目名称Nonlinear Time Series影响因子(影响力)学科排名




书目名称Nonlinear Time Series网络公开度




书目名称Nonlinear Time Series网络公开度学科排名




书目名称Nonlinear Time Series被引频次




书目名称Nonlinear Time Series被引频次学科排名




书目名称Nonlinear Time Series年度引用




书目名称Nonlinear Time Series年度引用学科排名




书目名称Nonlinear Time Series读者反馈




书目名称Nonlinear Time Series读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:59:28 | 显示全部楼层
发表于 2025-3-22 03:53:15 | 显示全部楼层
发表于 2025-3-22 05:00:23 | 显示全部楼层
https://doi.org/10.1007/978-0-387-69395-8Time series; econometrics; linear optimization; mathematical statistics; modeling; nonparametric methods;
发表于 2025-3-22 12:31:07 | 显示全部楼层
ARMA Modeling and Forecasting,Fitting an appropriate ARMA(.) model to an observed time series data set involves two interrelated problems, namely determining the order (.) (which is usually referred to as model identification) and estimating parameters in the model. Further, the postfitting diagnostic checking on the validity of the fitted model is equally important.
发表于 2025-3-22 13:06:14 | 显示全部楼层
0172-7397 big data warehouses readily accessible. Although cl- sic parametric models, which postulate global structures for underlying systems, are still very useful, la978-0-387-26142-3978-0-387-69395-8Series ISSN 0172-7397 Series E-ISSN 2197-568X
发表于 2025-3-22 17:52:44 | 显示全部楼层
发表于 2025-3-23 00:15:40 | 显示全部楼层
发表于 2025-3-23 04:10:17 | 显示全部楼层
发表于 2025-3-23 07:06:58 | 显示全部楼层
al from earlier in the book. Some of the results which we will discuss are proved in the literature in the context of Chevalley groups. Refer to the Concluding Remarks of this book for a brief introduction to these groups and some indication as to how they are related to the unitary group of a quadratic module.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 02:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表