找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Nonlinear Analysis of Shells by Finite Elements; F. G. Rammerstorfer Book 1992 Springer-Verlag Wien 1992 algorithms.bifurcation.deformatio

[复制链接]
查看: 34309|回复: 42
发表于 2025-3-21 19:12:30 | 显示全部楼层 |阅读模式
书目名称Nonlinear Analysis of Shells by Finite Elements
编辑F. G. Rammerstorfer
视频video
丛书名称CISM International Centre for Mechanical Sciences
图书封面Titlebook: Nonlinear Analysis of Shells by Finite Elements;  F. G. Rammerstorfer Book 1992 Springer-Verlag Wien 1992 algorithms.bifurcation.deformatio
描述State-of-the-art nonlinear computational analysis of shells, nonlinearities due to large deformations and nonlinear material behavior, alternative shell element formulations, algorithms and implementational aspects, composite and sandwich shells, local and global instabilities, optimization of shell structures and concepts of shape finding methods of free from shells. Furthermore, algorithms for the treatment of the nonlinear stability behavior of shell structures (including bifurcation and snap-through buckling) are presented in the book.
出版日期Book 1992
关键词algorithms; bifurcation; deformation; finite element method; material; optimization; shells; stability
版次1
doihttps://doi.org/10.1007/978-3-7091-2604-2
isbn_softcover978-3-211-82416-0
isbn_ebook978-3-7091-2604-2Series ISSN 0254-1971 Series E-ISSN 2309-3706
issn_series 0254-1971
copyrightSpringer-Verlag Wien 1992
The information of publication is updating

书目名称Nonlinear Analysis of Shells by Finite Elements影响因子(影响力)




书目名称Nonlinear Analysis of Shells by Finite Elements影响因子(影响力)学科排名




书目名称Nonlinear Analysis of Shells by Finite Elements网络公开度




书目名称Nonlinear Analysis of Shells by Finite Elements网络公开度学科排名




书目名称Nonlinear Analysis of Shells by Finite Elements被引频次




书目名称Nonlinear Analysis of Shells by Finite Elements被引频次学科排名




书目名称Nonlinear Analysis of Shells by Finite Elements年度引用




书目名称Nonlinear Analysis of Shells by Finite Elements年度引用学科排名




书目名称Nonlinear Analysis of Shells by Finite Elements读者反馈




书目名称Nonlinear Analysis of Shells by Finite Elements读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:14:46 | 显示全部楼层
Comparison of Shell Theory and Degeneration,iscretisation if they are based on the same mechanical assumptions. In particular for degenerated shell elements different versions of explicit integration across the thickness are discussed. Among these are the approximation ‘jacobian across the thickness is constant’ proven to be too restrictive a
发表于 2025-3-22 03:31:11 | 显示全部楼层
On Nonlinear Analysis of Shells Using Finite Elements Based on Mixed Interpolation of Tensorial Comased on the Ahmad-Irons-Zienkiewicz element overcome the locking problem. In particular, the elements based on mixed interpolation of tensorial components belong to the above mentioned set. In this Chapter, the formulation of these elements is reviewed. Its implementation in general purpose nonlinea
发表于 2025-3-22 05:18:58 | 显示全部楼层
Nonlinear Stability Analysis of Shells with the Finite Element Method,ght in the stability response. Here three main aspects arise. These are associated with the detection of singular points (e.g. limit or bifurcation points), the path-following in the pre- and postcritical range and a branch-switching between different paths. These problems are treated in this paper
发表于 2025-3-22 10:55:19 | 显示全部楼层
Composite and Sandwich Shells, sandwich shells with orthotropic core material are presented. The element formulations are based on the degeneration principle including large displacements with an efficient analytical thickness integration. Some micromechanical models are discussed which allow the estimation of over-all material
发表于 2025-3-22 14:19:32 | 显示全部楼层
发表于 2025-3-22 19:06:40 | 显示全部楼层
发表于 2025-3-22 23:04:02 | 显示全部楼层
发表于 2025-3-23 03:13:54 | 显示全部楼层
发表于 2025-3-23 09:13:07 | 显示全部楼层
https://doi.org/10.1007/978-3-7091-2604-2algorithms; bifurcation; deformation; finite element method; material; optimization; shells; stability
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 08:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表