找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Noncompact Lie Groups and Some of Their Applications; Elizabeth A. Tanner,Raj Wilson Book 1994 Springer Science+Business Media Dordrecht 1

[复制链接]
楼主: graphic
发表于 2025-3-25 03:58:02 | 显示全部楼层
Weyl Group Actions on Lagrangian Cycles and Rossmann’s Formulacally defined ..-invariant symplectic structure, and thus carries a distinguished ..-invariant measure. Kirillov’s character formula — in those cases when it applies — expresses the irreducible unitary characters of .. as Fourier transforms of the distinguished measures on coadjoint orbits, which ar
发表于 2025-3-25 09:50:36 | 显示全部楼层
发表于 2025-3-25 12:32:06 | 显示全部楼层
发表于 2025-3-25 18:23:30 | 显示全部楼层
Nilpotent Groups and Anharmonic Oscillators the quartic anharmonic oscillator is analyzed in detail and the relationship between the quartic anharmonic oscillator Hamiltonian and irreducible representations of Lie algebra elements of the nilpotent group is given. Scaling operators are used to partially determine the functional form of the ei
发表于 2025-3-25 23:15:13 | 显示全部楼层
发表于 2025-3-26 00:30:03 | 显示全部楼层
Basic Harmonic Analysis on Pseudo-Riemannian Symmetric SpacesWe give a survey of the present knowledge regarding basic questions in harmonic analysis on pseudo-Riemannian symmetric spaces . /., where . is a semisimple Lie group: The definition of the Fourier transform, the Plancherel formula, the inversion formula and the Paley-Wiener theorem.
发表于 2025-3-26 05:17:15 | 显示全部楼层
发表于 2025-3-26 09:55:47 | 显示全部楼层
Radon transform on halfplanes via group theoryConsider the halfplane . as a subset of . and the group . which acts transitively on . via ..
发表于 2025-3-26 15:39:02 | 显示全部楼层
Analytic torsion and automorphic formsIn this note we prove a vanishing theorem for the analytic torsion of a locally symmetric space.
发表于 2025-3-26 20:15:48 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 10:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表