找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Noncommutative Dynamics and E-Semigroups; William Arveson Book 2003 Springer Science+Business Media New York 2003 C*-algebra.Hilbert space

[复制链接]
楼主: 分期
发表于 2025-3-25 05:27:52 | 显示全部楼层
Noncommutative Dynamics and E-Semigroups978-0-387-21524-2Series ISSN 1439-7382 Series E-ISSN 2196-9922
发表于 2025-3-25 11:28:48 | 显示全部楼层
发表于 2025-3-25 11:59:32 | 显示全部楼层
-Semigroupstral objects of study in this book are semigroups of endomorphisms of infinite-dimensional type I factors. While it is usually convenient to coordinatize a type I factor . as the algebra .(.) of all bounded operators on a complex infinite-dimensional Hilbert space ., we will often be led to consider
发表于 2025-3-25 18:11:41 | 显示全部楼层
发表于 2025-3-25 21:11:05 | 显示全部楼层
发表于 2025-3-26 03:30:50 | 显示全部楼层
Path Spaces, on which there is defined an associative product that represents concatenation of paths. There are many ways a given path space can be endowed with Hilbert space structures, in which a Hilbert space is associated with each interval in (0, ∞), in such a way that the Hilbert spaces corresponding to
发表于 2025-3-26 07:51:28 | 显示全部楼层
发表于 2025-3-26 09:26:10 | 显示全部楼层
发表于 2025-3-26 15:26:01 | 显示全部楼层
-Generators and Dilation Theorysitive linear map . from a .-algebra . to .(.)can be dilated to a representation of .. More precisely, a . of . is a pair (.) consisting of a representation . of . on some other Hilbert space . and a bounded linear map . → . satisfying
发表于 2025-3-26 19:21:51 | 显示全部楼层
Index Theory for ,-Semigroupsmigroup is defined in terms of basic structures associated with . that generalize the concrete product systems associated with .-semigroups. However, these stuctures are quite subtle when the individual maps are not multiplicative, and are of independent interest in that they provide new information
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 23:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表