找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Non-vanishing of L-Functions and Applications; M. Ram Murty,V. Kumar Murty Book 1997 Springer Basel AG 1997 Number theory.alegbraic geomet

[复制链接]
查看: 52711|回复: 43
发表于 2025-3-21 17:01:24 | 显示全部楼层 |阅读模式
书目名称Non-vanishing of L-Functions and Applications
编辑M. Ram Murty,V. Kumar Murty
视频video
丛书名称Progress in Mathematics
图书封面Titlebook: Non-vanishing of L-Functions and Applications;  M. Ram Murty,V. Kumar Murty Book 1997 Springer Basel AG 1997 Number theory.alegbraic geomet
描述This monograph brings together a collection of results on the non-vanishing of L­ functions. The presentation, though based largely on the original papers, is suitable for independent study. A number of exercises have also been provided to aid in this endeavour. The exercises are of varying difficulty and those which require more effort have been marked with an asterisk. The authors would like to thank the Institut d‘Estudis Catalans for their encouragement of this work through the Ferran Sunyer i Balaguer Prize. We would also like to thank the Institute for Advanced Study, Princeton for the excellent conditions which made this work possible, as well as NSERC, NSF and FCAR for funding. Princeton M. Ram Murty August, 1996 V. Kumar Murty Introduction Since the time of Dirichlet and Riemann, the analytic properties of L-functions have been used to establish theorems of a purely arithmetic nature. The distri­ bution of prime numbers in arithmetic progressions is intimately connected with non-vanishing properties of various L-functions. With the subsequent advent of the Tauberian theory as developed by Wiener and Ikehara, these arithmetical the­ orems have been shown to be equivalent to
出版日期Book 1997
关键词Number theory; alegbraic geometry; arithmetic; number theory; prime number
版次1
doihttps://doi.org/10.1007/978-3-0348-8956-8
isbn_softcover978-3-0348-9843-0
isbn_ebook978-3-0348-8956-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Basel AG 1997
The information of publication is updating

书目名称Non-vanishing of L-Functions and Applications影响因子(影响力)




书目名称Non-vanishing of L-Functions and Applications影响因子(影响力)学科排名




书目名称Non-vanishing of L-Functions and Applications网络公开度




书目名称Non-vanishing of L-Functions and Applications网络公开度学科排名




书目名称Non-vanishing of L-Functions and Applications被引频次




书目名称Non-vanishing of L-Functions and Applications被引频次学科排名




书目名称Non-vanishing of L-Functions and Applications年度引用




书目名称Non-vanishing of L-Functions and Applications年度引用学科排名




书目名称Non-vanishing of L-Functions and Applications读者反馈




书目名称Non-vanishing of L-Functions and Applications读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:59:14 | 显示全部楼层
发表于 2025-3-22 03:47:21 | 显示全部楼层
发表于 2025-3-22 08:14:10 | 显示全部楼层
Non-vanishing of L-Functions and Applications978-3-0348-8956-8Series ISSN 0743-1643 Series E-ISSN 2296-505X
发表于 2025-3-22 12:25:53 | 显示全部楼层
发表于 2025-3-22 13:05:38 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-8956-8Number theory; alegbraic geometry; arithmetic; number theory; prime number
发表于 2025-3-22 19:36:18 | 显示全部楼层
发表于 2025-3-22 23:50:31 | 显示全部楼层
Artin ,-Functions,In this section, we shall collect together a few group theoretic preliminaries. We begin by reviewing the basic aspects of characters and class functions.
发表于 2025-3-23 05:03:05 | 显示全部楼层
Equidistribution and L-Functions,Let . be a compact topological space and .(.) the Banach space of continuous, complex-valued functions on ., with the supremum norm:
发表于 2025-3-23 07:42:13 | 显示全部楼层
Dirichlet L-Functions,Let . denote a Dirichlet character and .(.) the associated Dirichlet .-function. Let us begin by considering how one would approach the problem of showing that .(1/2, .) ≠ 0. In the following, we assume that . is defined modulo a prime . We first study the average
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 11:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表