找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Non-self-adjoint Schrödinger Operator with a Periodic Potential; Oktay Veliev Book 2021 The Editor(s) (if applicable) and The Author(s), u

[复制链接]
查看: 28374|回复: 35
发表于 2025-3-21 18:30:37 | 显示全部楼层 |阅读模式
书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential
编辑Oktay Veliev
视频video
概述Solves the problem of the non-self-adjoint Schrödinger operator with periodic potential complete with construction of the spectral expansion.Presents the complete spectral theory of the non-self-adjoi
图书封面Titlebook: Non-self-adjoint Schrödinger Operator with a Periodic Potential;  Oktay Veliev Book 2021 The Editor(s) (if applicable) and The Author(s), u
描述.This book gives a complete spectral analysis of the non-self-adjoint Schrödinger operator with a periodic complex-valued potential. Building from the investigation of the spectrum and spectral singularities and construction of the spectral expansion for the non-self-adjoint Schrödinger operator, the book features a complete spectral analysis of the Mathieu-Schrödinger operator and the Schrödinger operator with a parity-time (PT)-symmetric periodic optical potential. There currently exists no general spectral theorem for non-self-adjoint operators; the approaches in this book thus open up new possibilities for spectral analysis of some of the most important operators used in non-Hermitian quantum mechanics and optics. Featuring detailed proofs and a comprehensive treatment of the subject matter, the book is ideally suited for graduate students at the intersection of physics and mathematics..
出版日期Book 2021
关键词Non-self-adjoint Operators; Schrödinger Operators; Periodic Differential Operators; PT-symmetric Potent
版次1
doihttps://doi.org/10.1007/978-3-030-72683-6
isbn_softcover978-3-030-72685-0
isbn_ebook978-3-030-72683-6
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential影响因子(影响力)




书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential影响因子(影响力)学科排名




书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential网络公开度




书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential网络公开度学科排名




书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential被引频次




书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential被引频次学科排名




书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential年度引用




书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential年度引用学科排名




书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential读者反馈




书目名称Non-self-adjoint Schrödinger Operator with a Periodic Potential读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:34:51 | 显示全部楼层
Book 2021 investigation of the spectrum and spectral singularities and construction of the spectral expansion for the non-self-adjoint Schrödinger operator, the book features a complete spectral analysis of the Mathieu-Schrödinger operator and the Schrödinger operator with a parity-time (PT)-symmetric period
发表于 2025-3-22 04:27:39 | 显示全部楼层
发表于 2025-3-22 06:58:51 | 显示全部楼层
Introduction and Overview,djoint and non-self-adjoint operators are discussed. In addition, we explain the need to search for new methods for various cases of the non-self-adjoint Schrdinger operators. Finally we discuss the method and difficulties of studying the Schrdinger operator with a periodic complex-valued potential.
发表于 2025-3-22 09:00:39 | 显示全部楼层
Oktay VelievSolves the problem of the non-self-adjoint Schrödinger operator with periodic potential complete with construction of the spectral expansion.Presents the complete spectral theory of the non-self-adjoi
发表于 2025-3-22 15:57:45 | 显示全部楼层
http://image.papertrans.cn/n/image/667141.jpg
发表于 2025-3-22 18:08:59 | 显示全部楼层
https://doi.org/10.1007/978-3-030-72683-6Non-self-adjoint Operators; Schrödinger Operators; Periodic Differential Operators; PT-symmetric Potent
发表于 2025-3-22 21:37:34 | 显示全部楼层
发表于 2025-3-23 05:03:28 | 显示全部楼层
发表于 2025-3-23 05:36:48 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 13:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表