用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Non-commutative Multiple-Valued Logic Algebras; Lavinia Corina Ciungu Book 2014 Springer International Publishing Switzerland 2014 BCI-Alg

[复制链接]
楼主: 厨房默契
发表于 2025-3-23 11:42:07 | 显示全部楼层
发表于 2025-3-23 17:32:30 | 显示全部楼层
发表于 2025-3-23 20:08:30 | 显示全部楼层
发表于 2025-3-23 23:30:12 | 显示全部楼层
Residuated Lattices,ies of a residuated lattice and the lattice of filters of a residuated lattice, we study the Boolean center of an FL.-algebra and we define and study the directly indecomposable FL.-algebras. We prove that any linearly ordered FL.-algebra is directly indecomposable and any subdirectly irreducible FL
发表于 2025-3-24 02:59:43 | 显示全部楼层
发表于 2025-3-24 08:50:02 | 显示全部楼层
Generalized States on Residuated Structures,otion of Glivenko property defined for the non-commutative case. The main results consist of proving that any order-preserving type I state is a generalized Riečan state and in some particular conditions the two states coincide. We introduce the notion of a generalized local state on a perfect pseud
发表于 2025-3-24 11:50:04 | 显示全部楼层
1439-7382 Algebras. will be of interest to masters and PhD students, as well as researchers in mathematical logic and theoretical computer science..978-3-319-03299-3978-3-319-01589-7Series ISSN 1439-7382 Series E-ISSN 2196-9922
发表于 2025-3-24 16:20:05 | 显示全部楼层
发表于 2025-3-24 22:08:14 | 显示全部楼层
Pseudo-BCK Algebras,hat is, a least element. Another motivation is from classical and non-classical prepositional calculi modeling logical implications. Such algebras contain as a special subfamily the family of MV-algebras where some important fuzzy structures can be studied. Pseudo-BCK algebras were introduced by G.
发表于 2025-3-25 02:16:54 | 显示全部楼层
Pseudo-hoops,isibility condition and it is a meet-semilattice, so a bounded R.-monoid can be viewed as a bounded pseudohoop together with the join-semilattice property. In other words, a bounded pseudohoop is a meet-semilattice ordered residuated, integral and divisible monoid..In this chapter we present the mai
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 23:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表