找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Non-Oscillation Domains of Differential Equations with Two Parameters; Angelo B. Mingarelli,S. Gotskalk Halvorsen Book 1988 Springer-Verla

[复制链接]
查看: 46144|回复: 35
发表于 2025-3-21 20:07:13 | 显示全部楼层 |阅读模式
书目名称Non-Oscillation Domains of Differential Equations with Two Parameters
编辑Angelo B. Mingarelli,S. Gotskalk Halvorsen
视频video
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Non-Oscillation Domains of Differential Equations with Two Parameters;  Angelo B. Mingarelli,S. Gotskalk Halvorsen Book 1988 Springer-Verla
描述This research monograph is an introduction to single linear differential equations (systems) with two parameters and extensions to difference equations and Stieltjes integral equations. The scope is a study of the values of the parameters for which the equation has one solution(s) having one (finitely many) zeros. The prototype is Hill‘s equation or Mathieu‘s equation. For the most part no periodicity assumptions are used and when such are made, more general notions such as almost periodic functions are introduced, extending many classical and introducing many new results. Many of the proofs in the first part are variational thus allowing for natural extensions to more general settings later. The book should be accessible to graduate students and researchers alike and the proofs are, for the most part, self-contained.
出版日期Book 1988
关键词difference equation; differential equation; integral; integral equation; ordinary differential equation
版次1
doihttps://doi.org/10.1007/BFb0080637
isbn_softcover978-3-540-50078-0
isbn_ebook978-3-540-45918-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1988
The information of publication is updating

书目名称Non-Oscillation Domains of Differential Equations with Two Parameters影响因子(影响力)




书目名称Non-Oscillation Domains of Differential Equations with Two Parameters影响因子(影响力)学科排名




书目名称Non-Oscillation Domains of Differential Equations with Two Parameters网络公开度




书目名称Non-Oscillation Domains of Differential Equations with Two Parameters网络公开度学科排名




书目名称Non-Oscillation Domains of Differential Equations with Two Parameters被引频次




书目名称Non-Oscillation Domains of Differential Equations with Two Parameters被引频次学科排名




书目名称Non-Oscillation Domains of Differential Equations with Two Parameters年度引用




书目名称Non-Oscillation Domains of Differential Equations with Two Parameters年度引用学科排名




书目名称Non-Oscillation Domains of Differential Equations with Two Parameters读者反馈




书目名称Non-Oscillation Domains of Differential Equations with Two Parameters读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:20:10 | 显示全部楼层
Non-Oscillation Domains of Differential Equations with Two Parameters978-3-540-45918-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
发表于 2025-3-22 00:37:38 | 显示全部楼层
Lecture Notes in Mathematicshttp://image.papertrans.cn/n/image/666993.jpg
发表于 2025-3-22 06:35:00 | 显示全部楼层
https://doi.org/10.1007/BFb0080637difference equation; differential equation; integral; integral equation; ordinary differential equation
发表于 2025-3-22 10:14:18 | 显示全部楼层
发表于 2025-3-22 16:34:50 | 显示全部楼层
发表于 2025-3-22 17:54:31 | 显示全部楼层
发表于 2025-3-22 23:29:05 | 显示全部楼层
0075-8434 e equations and Stieltjes integral equations. The scope is a study of the values of the parameters for which the equation has one solution(s) having one (finitely many) zeros. The prototype is Hill‘s equation or Mathieu‘s equation. For the most part no periodicity assumptions are used and when such
发表于 2025-3-23 01:56:03 | 显示全部楼层
发表于 2025-3-23 06:33:47 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 14:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表