找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Non-Local Cell Adhesion Models; Symmetries and Bifur Andreas Buttenschön,Thomas Hillen Book 2021 The Editor(s) (if applicable) and The Auth

[复制链接]
查看: 32519|回复: 38
发表于 2025-3-21 19:23:44 | 显示全部楼层 |阅读模式
书目名称Non-Local Cell Adhesion Models
副标题Symmetries and Bifur
编辑Andreas Buttenschön,Thomas Hillen
视频video
概述Presents the first ever application of abstract bifurcation theory to a non-local problem.Includes leading research on pattern formation of non-local models.Describes in detail the development of basi
丛书名称CMS/CAIMS Books in Mathematics
图书封面Titlebook: Non-Local Cell Adhesion Models; Symmetries and Bifur Andreas Buttenschön,Thomas Hillen Book 2021 The Editor(s) (if applicable) and The Auth
描述.This monograph considers the mathematical modeling of cellular adhesion, a key interaction force in cell biology. While deeply grounded in the biological application of cell adhesion and tissue formation, this monograph focuses on the mathematical analysis of non-local adhesion models. The novel aspect is the non-local term (an integral operator), which accounts for forces generated by long ranged cell interactions. The analysis of non-local models has started only recently, and it has become a vibrant area of applied mathematics. This monograph contributes a systematic analysis of steady states and their bifurcation structure, combining global bifurcation results pioneered by Rabinowitz, equivariant bifurcation theory, and the symmetries of the non-local term. These methods allow readers to analyze and understand cell adhesion on a deep level..
出版日期Book 2021
关键词non-local equation; cell adhesion; symmetries; global bifurcation; non-local boundary conditions; non-loc
版次1
doihttps://doi.org/10.1007/978-3-030-67111-2
isbn_softcover978-3-030-67113-6
isbn_ebook978-3-030-67111-2Series ISSN 2730-650X Series E-ISSN 2730-6518
issn_series 2730-650X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Non-Local Cell Adhesion Models影响因子(影响力)




书目名称Non-Local Cell Adhesion Models影响因子(影响力)学科排名




书目名称Non-Local Cell Adhesion Models网络公开度




书目名称Non-Local Cell Adhesion Models网络公开度学科排名




书目名称Non-Local Cell Adhesion Models被引频次




书目名称Non-Local Cell Adhesion Models被引频次学科排名




书目名称Non-Local Cell Adhesion Models年度引用




书目名称Non-Local Cell Adhesion Models年度引用学科排名




书目名称Non-Local Cell Adhesion Models读者反馈




书目名称Non-Local Cell Adhesion Models读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:15:37 | 显示全部楼层
978-3-030-67113-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-22 02:19:12 | 显示全部楼层
Non-Local Cell Adhesion Models978-3-030-67111-2Series ISSN 2730-650X Series E-ISSN 2730-6518
发表于 2025-3-22 05:36:48 | 显示全部楼层
CMS/CAIMS Books in Mathematicshttp://image.papertrans.cn/n/image/666964.jpg
发表于 2025-3-22 10:53:48 | 显示全部楼层
发表于 2025-3-22 15:14:45 | 显示全部楼层
IntroductionCellular adhesion is one of the most important interaction forces in tissues. Cells adhere to each other, to other cells, and to the extracellular matrix (ECM). Cell adhesion is responsible for the formation of tissues, membranes, vasculature, muscle tissue, as well as cell movement and cancer spread.
发表于 2025-3-22 19:25:30 | 显示全部楼层
PreliminariesIn this section, we present some basic results that are needed later. We give a summary of the derivation of the non-local adhesion model from biological principles as presented.
发表于 2025-3-22 22:41:36 | 显示全部楼层
Local BifurcationThe success of the Armstrong–Painter–Sherratt adhesion model (.) is that it can replicate the complicated patterns observed in cell sorting experiments.
发表于 2025-3-23 04:46:12 | 显示全部楼层
Global BifurcationFor each ., we found local bifurcations at . with non-trivial eigenfunctions .. of . in . be given by . where ..(.) are the Fourier sine coefficients of . (see .).
发表于 2025-3-23 07:11:29 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 16:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表