找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Non-Euclidean Laguerre Geometry and Incircular Nets; Alexander I. Bobenko,Carl O.R. Lutz,Jan Techter Book 2021 The Editor(s) (if applicabl

[复制链接]
查看: 7106|回复: 38
发表于 2025-3-21 18:26:43 | 显示全部楼层 |阅读模式
书目名称Non-Euclidean Laguerre Geometry and Incircular Nets
编辑Alexander I. Bobenko,Carl O.R. Lutz,Jan Techter
视频video
概述The first systematic introduction to non-Euclidean Laguerre geometry in the literature.Demonstrates all features of Laguerre geometry in terms of one recent application: checkerboard incircular nets.B
丛书名称SpringerBriefs in Mathematics
图书封面Titlebook: Non-Euclidean Laguerre Geometry and Incircular Nets;  Alexander I. Bobenko,Carl O.R. Lutz,Jan Techter Book 2021 The Editor(s) (if applicabl
描述This textbook is a comprehensive and yet accessible introduction to non-Euclidean Laguerre geometry, for which there exists no previous systematic presentation in the literature. Moreover, we present new results by demonstrating all essential features of Laguerre geometry on the example of checkerboard incircular nets..Classical (Euclidean) Laguerre geometry studies oriented hyperplanes, oriented hyperspheres, and their oriented contact in Euclidean space. We describe how this can be generalized to arbitrary Cayley-Klein spaces, in particular hyperbolic and elliptic space, and study the corresponding groups of Laguerre transformations. We give an introduction to Lie geometry and describe how these Laguerre geometries can be obtained as subgeometries. As an application of two-dimensional Lie and Laguerre geometry we study the properties of checkerboard incircular nets..
出版日期Book 2021
关键词Laguerre geometry; Möbius geometry; Lie geometry; projective geometry; spherical geometry; hyperbolic geo
版次1
doihttps://doi.org/10.1007/978-3-030-81847-0
isbn_softcover978-3-030-81846-3
isbn_ebook978-3-030-81847-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Non-Euclidean Laguerre Geometry and Incircular Nets影响因子(影响力)




书目名称Non-Euclidean Laguerre Geometry and Incircular Nets影响因子(影响力)学科排名




书目名称Non-Euclidean Laguerre Geometry and Incircular Nets网络公开度




书目名称Non-Euclidean Laguerre Geometry and Incircular Nets网络公开度学科排名




书目名称Non-Euclidean Laguerre Geometry and Incircular Nets被引频次




书目名称Non-Euclidean Laguerre Geometry and Incircular Nets被引频次学科排名




书目名称Non-Euclidean Laguerre Geometry and Incircular Nets年度引用




书目名称Non-Euclidean Laguerre Geometry and Incircular Nets年度引用学科排名




书目名称Non-Euclidean Laguerre Geometry and Incircular Nets读者反馈




书目名称Non-Euclidean Laguerre Geometry and Incircular Nets读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:43:48 | 显示全部楼层
Non-Euclidean Laguerre Geometry,The primary objects in . are points on ., which yield a double cover of the points in hyperbolic/elliptic space, and spheres, which yield a double cover of the spheres in hyperbolic/elliptic space. The primary incidence between these objects is ..
发表于 2025-3-22 03:11:17 | 显示全部楼层
Lie Geometry,Möbius geometry (signature ., see Sect. .), hyperbolic Laguerre geometry (signature (., 2), see Sect. .), elliptic Laguerre geometry (signature ., see Sect. .), as well as Euclidean Laguerre geometry (signature (., 1, 1), see Sect. A.4) can all be lifted to . (signature .) using the methods from Chaps. . and ..
发表于 2025-3-22 08:03:34 | 显示全部楼层
Two-Dimensional Laguerre Geometry,egins in Chap. .. We first introduce the most basic concepts of these geometries in the Euclidean plane and then turn to the elliptic and hyperbolic plane. The intention here is to enable the reader to quickly get a glimpse of these geometries without diving into the details.
发表于 2025-3-22 11:38:51 | 显示全部楼层
Cayley-Klein Spaces,eSitter, and elliptic space can be obtained by using a quadric to induce the corresponding metric [Kle1928]. In this section we introduce the corresponding general notion of . and their groups of ., see, e.g., [Kle1928, Bla1954, Gie1982]. We put a particular emphasis on the description of hyperplanes, hyperspheres, and their mutual relations.
发表于 2025-3-22 16:31:45 | 显示全部楼层
978-3-030-81846-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-22 19:04:05 | 显示全部楼层
Non-Euclidean Laguerre Geometry and Incircular Nets978-3-030-81847-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
发表于 2025-3-23 00:03:44 | 显示全部楼层
发表于 2025-3-23 02:52:42 | 显示全部楼层
https://doi.org/10.1007/978-3-030-81847-0Laguerre geometry; Möbius geometry; Lie geometry; projective geometry; spherical geometry; hyperbolic geo
发表于 2025-3-23 06:56:22 | 显示全部楼层
Alexander I. Bobenko,Carl O.R. Lutz,Jan TechterThe first systematic introduction to non-Euclidean Laguerre geometry in the literature.Demonstrates all features of Laguerre geometry in terms of one recent application: checkerboard incircular nets.B
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 22:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表