找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Non-Abelian Harmonic Analysis; Applications of SL ( Roger Howe,Eng Chye Tan Textbook 1992 Springer-Verlag New York, Inc. 1992 Fourier analy

[复制链接]
查看: 41596|回复: 35
发表于 2025-3-21 17:14:53 | 显示全部楼层 |阅读模式
书目名称Non-Abelian Harmonic Analysis
副标题Applications of SL (
编辑Roger Howe,Eng Chye Tan
视频video
丛书名称Universitext
图书封面Titlebook: Non-Abelian Harmonic Analysis; Applications of SL ( Roger Howe,Eng Chye Tan Textbook 1992 Springer-Verlag New York, Inc. 1992 Fourier analy
描述This book mainly discusses the representation theory of the special linear group 8L(2, 1R), and some applications of this theory. In fact the emphasis is on the applications; the working title of the book while it was being writ­ ten was "Some Things You Can Do with 8L(2). " Some of the applications are outside representation theory, and some are to representation theory it­ self. The topics outside representation theory are mostly ones of substantial classical importance (Fourier analysis, Laplace equation, Huyghens‘ prin­ ciple, Ergodic theory), while the ones inside representation theory mostly concern themes that have been central to Harish-Chandra‘s development of harmonic analysis on semisimple groups (his restriction theorem, regularity theorem, character formulas, and asymptotic decay of matrix coefficients and temperedness). We hope this mix of topics appeals to nonspecialists in representation theory by illustrating (without an interminable prolegom­ ena) how representation theory can offer new perspectives on familiar topics and by offering some insight into some important themes in representation theory itself. Especially, we hope this book popularizes Harish-Chandra‘s
出版日期Textbook 1992
关键词Fourier analysis; Lie; Matrix; algebra; classification; eigenvector; equation; ergodic theory; group; lie alg
版次1
doihttps://doi.org/10.1007/978-1-4613-9200-2
isbn_softcover978-0-387-97768-3
isbn_ebook978-1-4613-9200-2Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag New York, Inc. 1992
The information of publication is updating

书目名称Non-Abelian Harmonic Analysis影响因子(影响力)




书目名称Non-Abelian Harmonic Analysis影响因子(影响力)学科排名




书目名称Non-Abelian Harmonic Analysis网络公开度




书目名称Non-Abelian Harmonic Analysis网络公开度学科排名




书目名称Non-Abelian Harmonic Analysis被引频次




书目名称Non-Abelian Harmonic Analysis被引频次学科排名




书目名称Non-Abelian Harmonic Analysis年度引用




书目名称Non-Abelian Harmonic Analysis年度引用学科排名




书目名称Non-Abelian Harmonic Analysis读者反馈




书目名称Non-Abelian Harmonic Analysis读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:16:18 | 显示全部楼层
发表于 2025-3-22 01:14:05 | 显示全部楼层
Roger Howe,Eng Chye Tan, daß der Neugeborene, bis zum Moment der Geburt gewöhnt, seine sämtlichen Bedürfnisse auf dem Wege der Nabelgefäße zu erledigen, in den ersten 24 bis 48 Stunden seines Lebens sozusagen noch immer erwartet, daß die Nahrung beim Nabel hineinrinnt, ein Schlaraffendasein, dessen Ende dem Neugeborenen e
发表于 2025-3-22 07:16:54 | 显示全部楼层
发表于 2025-3-22 09:05:55 | 显示全部楼层
发表于 2025-3-22 13:25:27 | 显示全部楼层
Textbook 1992n representation theory by illustrating (without an interminable prolegom­ ena) how representation theory can offer new perspectives on familiar topics and by offering some insight into some important themes in representation theory itself. Especially, we hope this book popularizes Harish-Chandra‘s
发表于 2025-3-22 17:59:02 | 显示全部楼层
978-0-387-97768-3Springer-Verlag New York, Inc. 1992
发表于 2025-3-23 00:50:07 | 显示全部楼层
Non-Abelian Harmonic Analysis978-1-4613-9200-2Series ISSN 0172-5939 Series E-ISSN 2191-6675
发表于 2025-3-23 04:06:22 | 显示全部楼层
,Representations of the Lie Algebra of ,(2, ℝ),We begin with a study of representations of sl(2, R). For simplicity of notation, we will write sl(2) for sl(2, R). Recall Example 1.1.8 in Chapter I where we introduced a basis {., .} for sl(2): . with the commutation relations: ..
发表于 2025-3-23 07:40:42 | 显示全部楼层
Applications to Analysis,We have seen that the Hermite functions on ℝ., {. | (.,..., .) ∈ ℤ.} form a .̄ eigenbasis in .(ℝ.) with (see Chap. III, Eq. (2.1.20)) ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 07:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表