找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: New Trends in Geometric Analysis; Spanish Network of G Antonio Alarcón,Vicente Palmer,César Rosales Book 2023 The Editor(s) (if applicable)

[复制链接]
楼主: protocol
发表于 2025-3-26 22:42:52 | 显示全部楼层
发表于 2025-3-27 04:09:48 | 显示全部楼层
RSME Springer Serieshttp://image.papertrans.cn/n/image/665947.jpg
发表于 2025-3-27 08:14:03 | 显示全部楼层
https://doi.org/10.1007/978-3-031-39916-9Geometric Analysis; Riemannian Geometry; Convex Geometry; Sub-Riemannian Geometry; Mean Curvature Flow; G
发表于 2025-3-27 09:56:29 | 显示全部楼层
978-3-031-39918-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-27 14:51:42 | 显示全部楼层
New Trends in Geometric Analysis978-3-031-39916-9Series ISSN 2509-8888 Series E-ISSN 2509-8896
发表于 2025-3-27 19:17:59 | 显示全部楼层
Snapshots of Non-local Constrained Mean Curvature-Type Flows, In 1987, G. Huisken (J. Reine Angew. Math. 382:35–48 (1987)) introduced a variant that keeps the enclosed volume constant while the area decreases. For this modification, a global term is added to the speed of the original flow, which makes the usual methods in geometric flows (e.g. maximum princip
发表于 2025-3-27 22:47:46 | 显示全部楼层
发表于 2025-3-28 03:41:25 | 显示全部楼层
Conjugate Plateau Constructions in Product Spaces,aces immersed in homogeneous Riemannian three-manifolds with isometry group of dimension four. On the one hand, we collect the results and strategies in the literature that have been developed so far to deal with the analysis of conjugate surfaces and their embeddedness. On the other hand, we revisi
发表于 2025-3-28 08:45:02 | 显示全部楼层
发表于 2025-3-28 12:43:35 | 显示全部楼层
Homogeneous Hypersurfaces in Symmetric Spaces,ces have remarkable geometric properties, providing the simplest examples of hypersurfaces with constant mean curvature. Thus, they are crucial for the investigation of more general types of submanifolds in ambient spaces with large isometry groups..In this survey article, we present an introduction
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 01:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表