找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: New Theory of Discriminant Analysis After R. Fisher; Advanced Research by Shuichi Shinmura Book 2016 Springer Science+Business Media Singap

[复制链接]
楼主: 稀少
发表于 2025-3-23 13:06:02 | 显示全部楼层
发表于 2025-3-23 15:11:30 | 显示全部楼层
Matroska Feature-Selection Method for Microarray Dataset (Method 2),. The Method 1 offers a 95 % CI for the error rate and coefficient. We obtained two means of the error rates, M1 and M2, in the training and validation samples and proposed a simple model selection procedure to choose the best model with a minimum M2. We compared two statistical LDFs and six MP-base
发表于 2025-3-23 21:07:09 | 显示全部楼层
发表于 2025-3-23 23:55:22 | 显示全部楼层
Book 2016d discriminate LSD theoretically (Problem 2). We solved the defect of the generalized inverse matrices (Problem 3)..For more than 10 years, many researchers have struggled to analyze the microarray dataset that is LSD (Problem 5). If we call the linearly separable model "Matroska," the dataset consi
发表于 2025-3-24 06:02:10 | 显示全部楼层
发表于 2025-3-24 06:41:56 | 显示全部楼层
New Theory of Discriminant Analysis After R. Fisher978-981-10-2164-0
发表于 2025-3-24 14:16:20 | 显示全部楼层
New Theory of Discriminant Analysis,ely solve these problems through five mathematical programming-based linear discriminant functions (MP-based LDFs). First, I develop an optimal linear discriminant function using integer programming (IP-OLDF) based on a minimum number of misclassifications (minimum NM (MNM)) criterion. We consider d
发表于 2025-3-24 16:51:31 | 显示全部楼层
,Iris Data and Fisher’s Assumption,s. Because Fisher evaluates Fisher’s LDF with these data, such data are very popular for the evaluation of discriminant functions. Therefore, we call these data, “Fisher’s Iris data.” Because we can easily separate setosa from virginica and vercicolor through a scatter plot, we usually discriminate
发表于 2025-3-24 20:00:42 | 显示全部楼层
发表于 2025-3-25 01:11:53 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 16:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表