找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: New Theory of Discriminant Analysis After R. Fisher; Advanced Research by Shuichi Shinmura Book 2016 Springer Science+Business Media Singap

[复制链接]
查看: 44013|回复: 41
发表于 2025-3-21 16:29:13 | 显示全部楼层 |阅读模式
书目名称New Theory of Discriminant Analysis After R. Fisher
副标题Advanced Research by
编辑Shuichi Shinmura
视频video
概述Compares eight LDFs by seven different kinds of data sets from the points of view of M2 and 95% CI of the coefficient.Presents solutions for five serious problems of discriminant analysis and finds im
图书封面Titlebook: New Theory of Discriminant Analysis After R. Fisher; Advanced Research by Shuichi Shinmura Book 2016 Springer Science+Business Media Singap
描述This is the first book to compare eight LDFs by different types of datasets, such as Fisher’s iris data, medical data with collinearities, Swiss banknote data that is a linearly separable data (LSD), student pass/fail determination using student attributes, 18 pass/fail determinations using exam scores, Japanese automobile data, and six microarray datasets (the datasets) that are LSD. We developed the 100-fold cross-validation for the small sample method (Method 1) instead of the LOO method. We proposed a simple model selection procedure to choose the best model having minimum M2 and Revised IP-OLDF based on MNM criterion was found to be better than other M2s in the above datasets..We compared two statistical LDFs and six MP-based LDFs. Those were Fisher’s LDF, logistic regression, three SVMs, Revised IP-OLDF, and another two OLDFs. Only a hard-margin SVM (H-SVM) and Revised IP-OLDF could discriminate LSD theoretically (Problem 2). We solved the defect of the generalized inverse matrices (Problem 3)..For more than 10 years, many researchers have struggled to analyze the microarray dataset that is LSD (Problem 5). If we call the linearly separable model "Matroska," the dataset consi
出版日期Book 2016
关键词Comparison of Eight LDFs; Model Selection by Best Model; 100-fold Cross Validation for Small Sample Me
版次1
doihttps://doi.org/10.1007/978-981-10-2164-0
isbn_softcover978-981-10-9546-7
isbn_ebook978-981-10-2164-0
copyrightSpringer Science+Business Media Singapore 2016
The information of publication is updating

书目名称New Theory of Discriminant Analysis After R. Fisher影响因子(影响力)




书目名称New Theory of Discriminant Analysis After R. Fisher影响因子(影响力)学科排名




书目名称New Theory of Discriminant Analysis After R. Fisher网络公开度




书目名称New Theory of Discriminant Analysis After R. Fisher网络公开度学科排名




书目名称New Theory of Discriminant Analysis After R. Fisher被引频次




书目名称New Theory of Discriminant Analysis After R. Fisher被引频次学科排名




书目名称New Theory of Discriminant Analysis After R. Fisher年度引用




书目名称New Theory of Discriminant Analysis After R. Fisher年度引用学科排名




书目名称New Theory of Discriminant Analysis After R. Fisher读者反馈




书目名称New Theory of Discriminant Analysis After R. Fisher读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:02:13 | 显示全部楼层
发表于 2025-3-22 03:07:44 | 显示全部楼层
发表于 2025-3-22 07:43:39 | 显示全部楼层
rse matrices (Problem 3)..For more than 10 years, many researchers have struggled to analyze the microarray dataset that is LSD (Problem 5). If we call the linearly separable model "Matroska," the dataset consi978-981-10-9546-7978-981-10-2164-0
发表于 2025-3-22 11:17:31 | 显示全部楼层
New Theory of Discriminant Analysis,ient. Because there are finite CPs in the discriminant coefficient space, we should select the CP interior point with MNM. We call this CP, “optimal CP (OCP).” MNM decreases monotonously (MNM. ≥ NMN.). Therefore, if MNM. = 0, all MNMs of the models, including these .-variables, are zero. If data are
发表于 2025-3-22 14:28:53 | 显示全部楼层
发表于 2025-3-22 20:54:36 | 显示全部楼层
发表于 2025-3-23 00:26:07 | 显示全部楼层
发表于 2025-3-23 03:04:14 | 显示全部楼层
发表于 2025-3-23 07:20:43 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 10:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表