找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: New Developments in Singularity Theory; D. Siersma,C. T. C. Wall,V. Zakalyukin Book 2001 Springer Science+Business Media Dordrecht 2001 Me

[复制链接]
查看: 30118|回复: 57
发表于 2025-3-21 16:52:10 | 显示全部楼层 |阅读模式
书目名称New Developments in Singularity Theory
编辑D. Siersma,C. T. C. Wall,V. Zakalyukin
视频video
丛书名称NATO Science Series II: Mathematics, Physics and Chemistry
图书封面Titlebook: New Developments in Singularity Theory;  D. Siersma,C. T. C. Wall,V. Zakalyukin Book 2001 Springer Science+Business Media Dordrecht 2001 Me
描述Singularities arise naturally in a huge number of differentareas of mathematics and science. As a consequence, singularity theorylies at the crossroads of paths that connect many of the mostimportant areas of applications of mathematics with some of its mostabstract regions..The main goal in most problems of singularity theory is to understandthe dependence of some objects of analysis, geometry, physics, orother science (functions, varieties, mappings, vector or tensorfields, differential equations, models, etc.) on parameters..The articles collected here can be grouped under three headings. (A)Singularities of real maps; (B) Singular complex variables; and (C)Singularities of homomorphic maps.
出版日期Book 2001
关键词Meromorphic function; Monodromy; Tensor; manifold; singularity theory
版次1
doihttps://doi.org/10.1007/978-94-010-0834-1
isbn_softcover978-0-7923-6997-4
isbn_ebook978-94-010-0834-1Series ISSN 1568-2609
issn_series 1568-2609
copyrightSpringer Science+Business Media Dordrecht 2001
The information of publication is updating

书目名称New Developments in Singularity Theory影响因子(影响力)




书目名称New Developments in Singularity Theory影响因子(影响力)学科排名




书目名称New Developments in Singularity Theory网络公开度




书目名称New Developments in Singularity Theory网络公开度学科排名




书目名称New Developments in Singularity Theory被引频次




书目名称New Developments in Singularity Theory被引频次学科排名




书目名称New Developments in Singularity Theory年度引用




书目名称New Developments in Singularity Theory年度引用学科排名




书目名称New Developments in Singularity Theory读者反馈




书目名称New Developments in Singularity Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:29:21 | 显示全部楼层
On the preparation theorem for subanalytic functionsater it was used by J.-M. Lion and J.-P. Rolin to study various properties of singular sets such as for instance: integration on subanalytic sets, o-minimality, order of contact between solutions of differential equations, see [.], [.].
发表于 2025-3-22 02:52:53 | 显示全部楼层
Computing Hodge-theoretic invariants of singularitiesace of rational differential . + 1-forms on ℙ. with poles only along . modulo exact forms. According to Griffiths [.], this space is filtered by the order of pole of representatives along . and the resulting filtration on ..(., .) is its ..
发表于 2025-3-22 06:26:45 | 显示全部楼层
发表于 2025-3-22 12:09:11 | 显示全部楼层
Classifying Spaces of Singularities and Thom Polynomialsd as theorems on existence and computation of so called .. In these notes we explain the definition of these polynomials based on the notion of the classifying space of singularities. This approach makes the ‘existence theorem’ trivial and also gives some ideas on computing these polynomials.
发表于 2025-3-22 15:54:13 | 显示全部楼层
发表于 2025-3-22 19:05:04 | 显示全部楼层
发表于 2025-3-22 22:53:49 | 显示全部楼层
发表于 2025-3-23 03:59:36 | 显示全部楼层
发表于 2025-3-23 06:44:34 | 显示全部楼层
1568-2609 eties, mappings, vector or tensorfields, differential equations, models, etc.) on parameters..The articles collected here can be grouped under three headings. (A)Singularities of real maps; (B) Singular complex variables; and (C)Singularities of homomorphic maps.978-0-7923-6997-4978-94-010-0834-1Series ISSN 1568-2609
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 13:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表