找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: New Approaches to Circle Packing in a Square; With Program Codes P. G. Szabó,M. Cs. Markót,I. García Book 2007 Springer-Verlag US 2007 SOIA

[复制链接]
查看: 8780|回复: 49
发表于 2025-3-21 17:40:08 | 显示全部楼层 |阅读模式
书目名称New Approaches to Circle Packing in a Square
副标题With Program Codes
编辑P. G. Szabó,M. Cs. Markót,I. García
视频video
概述Summarizes the results of recent years in circle packing into the unit square, emphasizing the algorithmic and optimization details.Reports the source codes that have provided the new results.Includes
丛书名称Springer Optimization and Its Applications
图书封面Titlebook: New Approaches to Circle Packing in a Square; With Program Codes P. G. Szabó,M. Cs. Markót,I. García Book 2007 Springer-Verlag US 2007 SOIA
描述.In one sense, the problem of finding the densest packing of congruent circles in a square is easy to understand. But on closer inspection, this problem reveals itself to be an interesting challenge of discrete and computational geometry with all its surprising structural forms and regularities. This book summarizes results achieved in solving the circle packing problem over the past few years, providing the reader with a comprehensive view of both theoretical and computational achievements. Typically illustrations of problem solutions are shown, elegantly displaying the results obtained..Beyond the theoretically challenging character of the problem, the solution methods developed in the book also have many practical applications..Since the codes can be worked with directly, they will enable the reader to improve on them and solve problem instances that still remain challenging, or to use them as a starting point for solving related application problems..
出版日期Book 2007
关键词SOIA; computational geometry; geometry; optimization; patterns
版次1
doihttps://doi.org/10.1007/978-0-387-45676-8
isbn_softcover978-1-4899-8897-3
isbn_ebook978-0-387-45676-8Series ISSN 1931-6828 Series E-ISSN 1931-6836
issn_series 1931-6828
copyrightSpringer-Verlag US 2007
The information of publication is updating

书目名称New Approaches to Circle Packing in a Square影响因子(影响力)




书目名称New Approaches to Circle Packing in a Square影响因子(影响力)学科排名




书目名称New Approaches to Circle Packing in a Square网络公开度




书目名称New Approaches to Circle Packing in a Square网络公开度学科排名




书目名称New Approaches to Circle Packing in a Square被引频次




书目名称New Approaches to Circle Packing in a Square被引频次学科排名




书目名称New Approaches to Circle Packing in a Square年度引用




书目名称New Approaches to Circle Packing in a Square年度引用学科排名




书目名称New Approaches to Circle Packing in a Square读者反馈




书目名称New Approaches to Circle Packing in a Square读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:34:59 | 显示全部楼层
发表于 2025-3-22 01:00:23 | 显示全部楼层
发表于 2025-3-22 06:03:57 | 显示全部楼层
Book 2007em reveals itself to be an interesting challenge of discrete and computational geometry with all its surprising structural forms and regularities. This book summarizes results achieved in solving the circle packing problem over the past few years, providing the reader with a comprehensive view of bo
发表于 2025-3-22 11:55:22 | 显示全部楼层
发表于 2025-3-22 12:57:21 | 显示全部楼层
Interval Methods for Verifying Structural Optimality,prove that the currently best-known packing . result in optimal packings and moreover apart from symmetric configurations and the movement of well-identified free circles, these are the only optimal packings [69]. The required statements will be verified with mathematical rigor using interval arithmetic tools.
发表于 2025-3-22 18:49:37 | 显示全部楼层
发表于 2025-3-23 00:18:03 | 显示全部楼层
发表于 2025-3-23 01:29:35 | 显示全部楼层
发表于 2025-3-23 09:04:52 | 显示全部楼层
P. G. Szabó,M. Cs. Markót,I. GarcíaSummarizes the results of recent years in circle packing into the unit square, emphasizing the algorithmic and optimization details.Reports the source codes that have provided the new results.Includes
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 03:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表