找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural Information Processing; 22nd International C Sabri Arik,Tingwen Huang,Qingshan Liu Conference proceedings 2015 Springer Internationa

[复制链接]
查看: 20218|回复: 59
发表于 2025-3-21 18:00:22 | 显示全部楼层 |阅读模式
书目名称Neural Information Processing
副标题22nd International C
编辑Sabri Arik,Tingwen Huang,Qingshan Liu
视频video
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Neural Information Processing; 22nd International C Sabri Arik,Tingwen Huang,Qingshan Liu Conference proceedings 2015 Springer Internationa
描述.The four volume set LNCS 9489, LNCS 9490, LNCS 9491, andLNCS 9492 constitutes the proceedings of the 22nd International Conference onNeural Information Processing, ICONIP 2015, held in Istanbul, Turkey, inNovember 2015...The 231 full papers presented were carefully reviewed andselected from 375 submissions. The 4 volumes represent topical sectionscontaining articles on Learning Algorithms and Classification Systems;Artificial Intelligence and Neural Networks: Theory, Design, and Applications;Image and Signal Processing; and Intelligent Social Networks..
出版日期Conference proceedings 2015
关键词Biometrics; data mining; genetic algorithm; pattern recognition; semantic Web; artificial neural networks
版次1
doihttps://doi.org/10.1007/978-3-319-26535-3
isbn_softcover978-3-319-26534-6
isbn_ebook978-3-319-26535-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

书目名称Neural Information Processing影响因子(影响力)




书目名称Neural Information Processing影响因子(影响力)学科排名




书目名称Neural Information Processing网络公开度




书目名称Neural Information Processing网络公开度学科排名




书目名称Neural Information Processing被引频次




书目名称Neural Information Processing被引频次学科排名




书目名称Neural Information Processing年度引用




书目名称Neural Information Processing年度引用学科排名




书目名称Neural Information Processing读者反馈




书目名称Neural Information Processing读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:00:23 | 显示全部楼层
Robust Ensemble Classifier Combination Based on Noise Removal with One-Class SVM,et partition to increment classifier model performance. We applied Gini impurity approach to find the best split percentage of noise filter ratio. The filtered sub data set is then used to train individual ensemble models.
发表于 2025-3-22 02:09:42 | 显示全部楼层
Weighted ANN Input Layer for Adaptive Features Selection for Robust Fault Classification,lue vector. Different instances of ANN are then trained and tested to calculate F1_score with the reduced dominant features at different SNRs for each threshold value. Trained ANN with best average classification accuracy among all ANN instances gives us required number of dominant features.
发表于 2025-3-22 08:05:36 | 显示全部楼层
Neural Network with Evolutionary Algorithm for Packet Matching,ative procedure. Data experiments show that this new algorithm effectively improves the performance of packet matching compared with the classical algorithms. And it can completely solve the problem of large-scale rule packet matching.
发表于 2025-3-22 10:41:25 | 显示全部楼层
A Parallel Sensitive Area Selection-Based Particle Swarm Optimization Algorithm for Fast Solving CNate the validity, we take Zebiak-Cane (ZC) numerical model as a case. Experimental results show that the proposed method can obtain a better CNOP more efficiently than SAEP [.] and PCAGA [.] which are two latest researches on intelligent algorithms for solving CNOP.
发表于 2025-3-22 16:22:58 | 显示全部楼层
Semi-supervised Non-negative Local Coordinate Factorization,led examples to be the class indicator. Benefit from the labeled data, SNLCF can boost NMF in clustering the unlabeled data. Experimental results on UCI datasets and two popular face image datasets suggest that SNLCF outperforms the representative methods in terms of both average accuracy and average normalized mutual information.
发表于 2025-3-22 19:38:07 | 显示全部楼层
发表于 2025-3-22 21:55:14 | 显示全部楼层
Trading Optimally Diversified Portfolios in Emerging Markets with Neuro-Particle Swarm Optimisationo diversity) and that in the case of emerging markets the optimal value for this parameter may be different to the standard investment industry recommendation. Learning is then extended to include this parameter, with out-of-sample testing demonstrating very promising results.
发表于 2025-3-23 03:06:11 | 显示全部楼层
发表于 2025-3-23 09:27:50 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 03:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表