找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural Information Processing; 29th International C Mohammad Tanveer,Sonali Agarwal,Adam Jatowt Conference proceedings 2023 The Editor(s) (

[复制链接]
楼主: STH
发表于 2025-3-26 21:50:31 | 显示全部楼层
发表于 2025-3-27 01:16:50 | 显示全部楼层
Multi-level 3DCNN with Min-Max Ranking Loss for Weakly-Supervised Video Anomaly Detection strategy from 3DCNN is proposed to extract the fine lower-level representation of the input video sequences. An efficient temporal dependency encoding is utilized further to capture the sharp change in untrimmed surveillance videos. The proposed method is evaluated on a widely used benchmark anomal
发表于 2025-3-27 06:15:22 | 显示全部楼层
发表于 2025-3-27 12:41:38 | 显示全部楼层
Vision Transformer-Based Federated Learning for COVID-19 Detection Using Chest X-Raynlabeled datasets using pre-training, whereas federated learning enables participating clients to jointly train models without disclosing source data outside the originating site. We experimentally establish that our proposed Vision Transformer based Federated Learning architecture outperforms CNN b
发表于 2025-3-27 15:59:13 | 显示全部楼层
发表于 2025-3-27 19:13:17 | 显示全部楼层
发表于 2025-3-28 00:45:52 | 显示全部楼层
发表于 2025-3-28 05:54:01 | 显示全部楼层
Efficient-Nets and Their Fuzzy Ensemble: An Approach for Skin Cancer Classification After that, we combine the prediction probabilities of base classifiers using Choquet fuzzy integral to get the final predicted labels. The proposed architecture is evaluated based on ISIC multi-class skin cancer classification. The rewarded cross-entropy loss-based training regime showcased its su
发表于 2025-3-28 09:29:32 | 显示全部楼层
发表于 2025-3-28 13:36:31 | 显示全部楼层
A Multi-modal Graph Convolutional Network for Predicting Human Breast Cancer Prognosiseast cancer, we proposed a novel classification model in this study, that is based on multi-modal graph convolutional networks (MGCN). To extract features, we first build a graph convolutional network (GCN) for individual modalities. And then, we feed the concatenated features generated by GCN into
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 07:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表