找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural Information Processing; 23rd International C Akira Hirose,Seiichi Ozawa,Derong Liu Conference proceedings 2016 Springer Internationa

[复制链接]
查看: 44663|回复: 51
发表于 2025-3-21 17:12:06 | 显示全部楼层 |阅读模式
书目名称Neural Information Processing
副标题23rd International C
编辑Akira Hirose,Seiichi Ozawa,Derong Liu
视频video
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Neural Information Processing; 23rd International C Akira Hirose,Seiichi Ozawa,Derong Liu Conference proceedings 2016 Springer Internationa
描述.The four volume set LNCS 9947, LNCS 9948, LNCS 9949, and LNCS 9950 constitutes the proceedings of the 23rd International Conference on Neural Information Processing, ICONIP 2016, held in Kyoto, Japan, in October 2016. The 296 full papers presented were carefully reviewed and selected from 431 submissions. The 4 volumes are organized in topical sections on deep and reinforcement learning; big data analysis; neural data analysis; robotics and control; bio-inspired/energy efficient information processing; whole brain architecture; neurodynamics; bioinformatics; biomedical engineering; data mining and cybersecurity workshop; machine learning; neuromorphic hardware; sensory perception; pattern recognition; social networks; brain-machine interface; computer vision; time series analysis; data-driven approach for extracting latent features; topological and graph based clustering methods; computational intelligence; data mining; deep neural networks; computational and cognitive neurosciences; theory and algorithms..
出版日期Conference proceedings 2016
关键词embedded systems; genetic algorithms; neural networks; pattern recognition; swarm intelligence; big data;
版次1
doihttps://doi.org/10.1007/978-3-319-46687-3
isbn_softcover978-3-319-46686-6
isbn_ebook978-3-319-46687-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2016
The information of publication is updating

书目名称Neural Information Processing影响因子(影响力)




书目名称Neural Information Processing影响因子(影响力)学科排名




书目名称Neural Information Processing网络公开度




书目名称Neural Information Processing网络公开度学科排名




书目名称Neural Information Processing被引频次




书目名称Neural Information Processing被引频次学科排名




书目名称Neural Information Processing年度引用




书目名称Neural Information Processing年度引用学科排名




书目名称Neural Information Processing读者反馈




书目名称Neural Information Processing读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:37:20 | 显示全部楼层
发表于 2025-3-22 04:27:25 | 显示全部楼层
发表于 2025-3-22 06:30:23 | 显示全部楼层
Establishing Mechanism of Warning for River Dust Event Based on an Artificial Neural Networkng PM.(T + 1) concentration has six input factors include PM., PM. and meteorological condition. The train and test R was 0.8392 and 0.7900. PM.(T) was the most important factor in predicting PM.(T + 1) by sensitivity analysis. Finally, mechanism constraints were established for warning of high PM.(T + 1) concentrations in river basins.
发表于 2025-3-22 11:13:23 | 显示全部楼层
Cloud Monitoring Data Challenges: A Systematic Review, virtualization technology, energy, availability and performance. The results of this review are expected to help researchers and practitioners to understand cloud computing data challenges and develop innovative techniques and strategies to deal with these challenges.
发表于 2025-3-22 12:55:14 | 显示全部楼层
发表于 2025-3-22 18:36:55 | 显示全部楼层
Deep Q-Learning with Prioritized Samplingwe use prioritized sampling into DQN as an alternative. Our experimental results demonstrate that DQN with prioritized sampling achieves a better performance, in terms of both average score and learning rate on four Atari 2600 games.
发表于 2025-3-23 00:38:59 | 显示全部楼层
发表于 2025-3-23 03:28:00 | 显示全部楼层
发表于 2025-3-23 08:24:16 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 06:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表