找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[复制链接]
楼主: 相似
发表于 2025-3-23 12:42:28 | 显示全部楼层
发表于 2025-3-23 15:33:22 | 显示全部楼层
发表于 2025-3-23 21:00:10 | 显示全部楼层
发表于 2025-3-23 23:56:15 | 显示全部楼层
发表于 2025-3-24 05:37:24 | 显示全部楼层
发表于 2025-3-24 08:00:43 | 显示全部楼层
Aided Diagnosis of Autism Spectrum Disorder Based on a Mixed Neural Network Model the conventional methods are questionnaires and behavioral observation, which may be subjective and cause misdiagnosis. In order to obtain an accurate diagnosis, we could explore the quantitative imaging biomarkers and leverage the machine learning to learn the classification model on these biomark
发表于 2025-3-24 11:05:46 | 显示全部楼层
发表于 2025-3-24 17:16:22 | 显示全部楼层
Multi-scale Feature Fusion Neural Network for Accurate Prediction of Drug-Target Interactionsng process that involves conducting biological experiments with a vast array of potential compounds. To accelerate this process, computational methods have been developed, and with the growth of available datasets, deep learning methods have been widely applied in this field. Despite the emergence o
发表于 2025-3-24 21:09:51 | 显示全部楼层
GoatPose: A Lightweight and Efficient Network with Attention Mechanismlutional networks to edge devices. In this paper, we present GoatPose: a lightweight deep convolutional model for real-time human keypoint detection incorporating attention mechanism. Since the high computational cost is associated with the frequently-use convolution block, we substitute it with our
发表于 2025-3-25 00:59:28 | 显示全部楼层
Sign Language Recognition for Low Resource Languages Using Few Shot Learnings crucial to leverage a few-shot learning strategy for SLR. This research proposes a novel skeleton-based sign language recognition method based on the prototypical network [.] called ProtoSign. Furthermore, we contribute to the field by introducing the first publicly accessible dynamic word-level S
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 14:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表