找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Neural Information Processing; 21st International C Chu Kiong Loo,Keem Siah Yap,Kaizhu Huang Conference proceedings 2014 Springer Internati

[复制链接]
查看: 8550|回复: 63
发表于 2025-3-21 19:24:47 | 显示全部楼层 |阅读模式
书目名称Neural Information Processing
副标题21st International C
编辑Chu Kiong Loo,Keem Siah Yap,Kaizhu Huang
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Neural Information Processing; 21st International C Chu Kiong Loo,Keem Siah Yap,Kaizhu Huang Conference proceedings 2014 Springer Internati
描述The three volume set LNCS 8834, LNCS 8835, and LNCS 8836 constitutes the proceedings of the 20th International Conference on Neural Information Processing, ICONIP 2014, held in Kuching, Malaysia, in November 2014. The 231 full papers presented were carefully reviewed and selected from 375 submissions. The selected papers cover major topics of theoretical research, empirical study, and applications of neural information processing research. The 3 volumes represent topical sections containing articles on cognitive science, neural networks and learning systems, theory and design, applications, kernel and statistical methods, evolutionary computation and hybrid intelligent systems, signal and image processing, and special sessions intelligent systems for supporting decision, making processes,theories and applications, cognitive robotics, and learning systems for social network and web mining.
出版日期Conference proceedings 2014
关键词activity recognition; artificial intelligence; big data; bio-inspired computing; brain-computer interfac
版次1
doihttps://doi.org/10.1007/978-3-319-12640-1
isbn_softcover978-3-319-12639-5
isbn_ebook978-3-319-12640-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

书目名称Neural Information Processing影响因子(影响力)




书目名称Neural Information Processing影响因子(影响力)学科排名




书目名称Neural Information Processing网络公开度




书目名称Neural Information Processing网络公开度学科排名




书目名称Neural Information Processing被引频次




书目名称Neural Information Processing被引频次学科排名




书目名称Neural Information Processing年度引用




书目名称Neural Information Processing年度引用学科排名




书目名称Neural Information Processing读者反馈




书目名称Neural Information Processing读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:14:49 | 显示全部楼层
Neural Information Processing978-3-319-12640-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-22 00:39:51 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/n/image/663571.jpg
发表于 2025-3-22 06:06:46 | 显示全部楼层
https://doi.org/10.1007/978-3-319-12640-1activity recognition; artificial intelligence; big data; bio-inspired computing; brain-computer interfac
发表于 2025-3-22 10:23:58 | 显示全部楼层
Non-negative Matrix Factorization with Schatten p-norms Reguralizationlarization terms were previously added to the NMF objective function in order to produce sparser results and thus to obtain a more qualitative partition of data. We would like to propose the general framework for regularized NMF based on Schatten p-norms. Experimental results show the effectiveness of our approach on different data sets.
发表于 2025-3-22 14:51:35 | 显示全部楼层
A New Energy Model for the Hidden Markov Random Fieldsood energy function of the Hidden Markov Random Fields model based on the Hidden Markov Model formalism. With this new energy model, we aim at (1) avoiding the use of a key parameter chosen empirically on which the results of the current models are heavily relying, (2) proposing an information rich modelisation of neighborhood relationships.
发表于 2025-3-22 21:01:29 | 显示全部楼层
Graph Kernels Exploiting Weisfeiler-Lehman Graph Isomorphism Test Extensionsing phase of the nodes based on test-specific information extracted from the graph, for example the set of neighbours of a node. We defined a novel relabelling and derived two kernels of the framework from it. The novel kernels are very fast to compute and achieve state-of-the-art results on five real-world datasets.
发表于 2025-3-22 22:59:06 | 显示全部楼层
A New Ensemble Clustering Method Based on Dempster-Shafer Evidence Theory and Gaussian Mixture Modelsults from single clustering methods. We introduce the GMM technique to determine the confidence values for candidate results from each clustering method. Then we employ the DS theory to combine the evidences supplied by different clustering methods, based on which the final result is obtained. We t
发表于 2025-3-23 03:46:39 | 显示全部楼层
Extraction of Dimension Reduced Features from Empirical Kernel Vectorping to make the trained classifier by using the linear SVM with the extracted feature vectors equivalent to the one obtained by the standard kernel SVM. The proposed feature extraction mapping is defined by using the eigen values and eigen vectors of the Gram matrix. Since the eigen vector problem
发表于 2025-3-23 09:29:08 | 显示全部楼层
Method of Evolving Non-stationary Multiple Kernel Learningimal mapping model in a large high-dimensional feature space. However, it is not suitable to compute the composite kernel in a stationary way for all samples. In this paper, we propose a method of evolving non-stationary multiple kernel learning, in which base kernels are encoded as tree kernels and
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 19:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表