找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Mathematical Analysis and Numerical Methods for Science and Technology; Volume 5 Evolution P Robert Dautray,Jacques-Louis Lions BookLatest

[复制链接]
查看: 41437|回复: 35
发表于 2025-3-21 16:35:32 | 显示全部楼层 |阅读模式
书目名称Mathematical Analysis and Numerical Methods for Science and Technology
副标题Volume 5 Evolution P
编辑Robert Dautray,Jacques-Louis Lions
视频video
图书封面Titlebook: Mathematical Analysis and Numerical Methods for Science and Technology; Volume 5 Evolution P Robert Dautray,Jacques-Louis Lions BookLatest
描述299 G(t), and to obtain the corresponding properties of its Laplace transform (called the resolvent of - A) R(p) = (A + pl)-l , whose existence is linked with the spectrum of A. The functional space framework used will be, for simplicity, a Banach space(3). To summarise, we wish to extend definition (2) for bounded operators A, i.e. G(t) = exp( - tA) , to unbounded operators A over X, where X is now a Banach space. Plan of the Chapter We shall see in this chapter that this enterprise is possible, that it gives us in addition to what is demanded above, some supplementary information in a number of areas: - a new ‘explicit‘ expression of the solution; - the regularity of the solution taking into account some conditions on the given data (u , u1,f etc ... ) with the notion of a strong solution; o - asymptotic properties of the solutions. In order to treat these problems we go through the following stages: in § 1, we shall study the principal properties of operators of semigroups {G(t)} acting in the space X, particularly the existence of an upper exponential bound (in t) of the norm of G(t). In §2, we shall study the functions u E X for which t --+ G(t)u is differentiable.
出版日期BookLatest edition
关键词Banach Space; Hilbert space; calculus; differential equation; functional analysis; mathematical analysis;
版次1
doihttps://doi.org/10.1007/978-3-642-58090-1
copyrightSpringer-Verlag Berlin Heidelberg 2000
The information of publication is updating

书目名称Mathematical Analysis and Numerical Methods for Science and Technology影响因子(影响力)




书目名称Mathematical Analysis and Numerical Methods for Science and Technology影响因子(影响力)学科排名




书目名称Mathematical Analysis and Numerical Methods for Science and Technology网络公开度




书目名称Mathematical Analysis and Numerical Methods for Science and Technology网络公开度学科排名




书目名称Mathematical Analysis and Numerical Methods for Science and Technology被引频次




书目名称Mathematical Analysis and Numerical Methods for Science and Technology被引频次学科排名




书目名称Mathematical Analysis and Numerical Methods for Science and Technology年度引用




书目名称Mathematical Analysis and Numerical Methods for Science and Technology年度引用学科排名




书目名称Mathematical Analysis and Numerical Methods for Science and Technology读者反馈




书目名称Mathematical Analysis and Numerical Methods for Science and Technology读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:57:25 | 显示全部楼层
发表于 2025-3-22 03:20:07 | 显示全部楼层
发表于 2025-3-22 08:26:55 | 显示全部楼层
发表于 2025-3-22 12:32:16 | 显示全部楼层
发表于 2025-3-22 15:51:57 | 显示全部楼层
http://image.papertrans.cn/n/image/642257.jpg
发表于 2025-3-22 20:30:03 | 显示全部楼层
https://doi.org/10.1007/978-3-642-58090-1Banach Space; Hilbert space; calculus; differential equation; functional analysis; mathematical analysis;
发表于 2025-3-22 22:35:20 | 显示全部楼层
发表于 2025-3-23 02:28:25 | 显示全部楼层
发表于 2025-3-23 06:26:51 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 02:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表