找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Monte Carlo Methods in Bayesian Computation; Ming-Hui Chen,Qi-Man Shao,Joseph G. Ibrahim Book 2000 Springer Science+Business Media New Yor

[复制链接]
查看: 32531|回复: 35
发表于 2025-3-21 18:46:12 | 显示全部楼层 |阅读模式
书目名称Monte Carlo Methods in Bayesian Computation
编辑Ming-Hui Chen,Qi-Man Shao,Joseph G. Ibrahim
视频video
概述Includes supplementary material:
丛书名称Springer Series in Statistics
图书封面Titlebook: Monte Carlo Methods in Bayesian Computation;  Ming-Hui Chen,Qi-Man Shao,Joseph G. Ibrahim Book 2000 Springer Science+Business Media New Yor
描述Sampling from the posterior distribution and computing posterior quanti­ ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput­ ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv­ ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste­ rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in­ volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac­ tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent
出版日期Book 2000
关键词Bayesian Computation; Estimator; Likelihood; Logistic Regression; Markov Chain; Monte Carlo Methods; Time
版次1
doihttps://doi.org/10.1007/978-1-4612-1276-8
isbn_softcover978-1-4612-7074-4
isbn_ebook978-1-4612-1276-8Series ISSN 0172-7397 Series E-ISSN 2197-568X
issn_series 0172-7397
copyrightSpringer Science+Business Media New York 2000
The information of publication is updating

书目名称Monte Carlo Methods in Bayesian Computation影响因子(影响力)




书目名称Monte Carlo Methods in Bayesian Computation影响因子(影响力)学科排名




书目名称Monte Carlo Methods in Bayesian Computation网络公开度




书目名称Monte Carlo Methods in Bayesian Computation网络公开度学科排名




书目名称Monte Carlo Methods in Bayesian Computation被引频次




书目名称Monte Carlo Methods in Bayesian Computation被引频次学科排名




书目名称Monte Carlo Methods in Bayesian Computation年度引用




书目名称Monte Carlo Methods in Bayesian Computation年度引用学科排名




书目名称Monte Carlo Methods in Bayesian Computation读者反馈




书目名称Monte Carlo Methods in Bayesian Computation读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:43:39 | 显示全部楼层
发表于 2025-3-22 00:40:01 | 显示全部楼层
Ming-Hui Chen,Qi-Man Shao,Joseph G. IbrahimIncludes supplementary material:
发表于 2025-3-22 06:09:47 | 显示全部楼层
发表于 2025-3-22 08:54:46 | 显示全部楼层
发表于 2025-3-22 15:11:57 | 显示全部楼层
978-1-4612-7074-4Springer Science+Business Media New York 2000
发表于 2025-3-22 17:37:35 | 显示全部楼层
发表于 2025-3-22 22:18:44 | 显示全部楼层
发表于 2025-3-23 02:25:49 | 显示全部楼层
0172-7397 n Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput­ ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques
发表于 2025-3-23 07:01:22 | 显示全部楼层
Zusammenfassungschiedlich ausgestaltet. Unterschiede konnten sowohl bei den gesetzlichen Zwangsvorsorgemaßnahmen als auch bei betrieblichen Vorsorgemaßnahmen festgestellt werden. Einzig die private Altersvorsorge scheint bei allen betrachteten Typen von Erwerbstätigen gleich ausgestaltet.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-9 00:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表