找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Modular Units; Daniel S. Kubert,Serge Lang Book 1981 Springer Science+Business Media New York 1981 Arithmetic.Divisorenklassengruppe.Einhe

[复制链接]
查看: 52082|回复: 35
发表于 2025-3-21 19:58:18 | 显示全部楼层 |阅读模式
书目名称Modular Units
编辑Daniel S. Kubert,Serge Lang
视频video
丛书名称Grundlehren der mathematischen Wissenschaften
图书封面Titlebook: Modular Units;  Daniel S. Kubert,Serge Lang Book 1981 Springer Science+Business Media New York 1981 Arithmetic.Divisorenklassengruppe.Einhe
描述In the present book, we have put together the basic theory of the units and cuspidal divisor class group in the modular function fields, developed over the past few years. Let i) be the upper half plane, and N a positive integer. Let r(N) be the subgroup of SL (Z) consisting of those matrices == 1 mod N. Then r(N)i) 2 is complex analytic isomorphic to an affine curve YeN), whose compactifi­ cation is called the modular curve X(N). The affine ring of regular functions on yeN) over C is the integral closure of C[j] in the function field of X(N) over C. Here j is the classical modular function. However, for arithmetic applications, one considers the curve as defined over the cyclotomic field Q(JlN) of N-th roots of unity, and one takes the integral closure either of Q[j] or Z[j], depending on how much arithmetic one wants to throw in. The units in these rings consist of those modular functions which have no zeros or poles in the upper half plane. The points of X(N) which lie at infinity,that is which do not correspond to points on the above affine set, are called the cusps, because of the way they look in a fundamental domain in the upper half plane. They generate a subgroup of the di
出版日期Book 1981
关键词Arithmetic; Divisorenklassengruppe; Einheit (Math; ); Finite; Modular form; Modulfunktion; function; logarit
版次1
doihttps://doi.org/10.1007/978-1-4757-1741-9
isbn_softcover978-1-4419-2813-9
isbn_ebook978-1-4757-1741-9Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer Science+Business Media New York 1981
The information of publication is updating

书目名称Modular Units影响因子(影响力)




书目名称Modular Units影响因子(影响力)学科排名




书目名称Modular Units网络公开度




书目名称Modular Units网络公开度学科排名




书目名称Modular Units被引频次




书目名称Modular Units被引频次学科排名




书目名称Modular Units年度引用




书目名称Modular Units年度引用学科排名




书目名称Modular Units读者反馈




书目名称Modular Units读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:36:42 | 显示全部楼层
发表于 2025-3-22 01:27:49 | 显示全部楼层
发表于 2025-3-22 08:34:06 | 显示全部楼层
发表于 2025-3-22 12:17:00 | 显示全部楼层
发表于 2025-3-22 16:12:06 | 显示全部楼层
https://doi.org/10.1007/978-1-4757-1741-9Arithmetic; Divisorenklassengruppe; Einheit (Math; ); Finite; Modular form; Modulfunktion; function; logarit
发表于 2025-3-22 20:27:39 | 显示全部楼层
发表于 2025-3-22 22:16:39 | 显示全部楼层
0072-7830 eloped over the past few years. Let i) be the upper half plane, and N a positive integer. Let r(N) be the subgroup of SL (Z) consisting of those matrices == 1 mod N. Then r(N)i) 2 is complex analytic isomorphic to an affine curve YeN), whose compactifi­ cation is called the modular curve X(N). The a
发表于 2025-3-23 01:47:03 | 显示全部楼层
发表于 2025-3-23 09:29:39 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 02:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表