找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Modern Numerical Nonlinear Optimization; Neculai Andrei Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license

[复制链接]
查看: 10138|回复: 35
发表于 2025-3-21 17:41:59 | 显示全部楼层 |阅读模式
书目名称Modern Numerical Nonlinear Optimization
编辑Neculai Andrei
视频video
概述Nonlinear optimization algorithms for solving large-scale unconstrained and constrained optimization applications.Optimization methods that are currently the most valuable for solving real-life proble
丛书名称Springer Optimization and Its Applications
图书封面Titlebook: Modern Numerical Nonlinear Optimization;  Neculai Andrei Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license
描述.This book includes a thorough theoretical and computational analysis of unconstrained and constrained optimization algorithms and combines and integrates the most recent techniques and advanced computational linear algebra methods. Nonlinear optimization methods and techniques have reached their maturity and an abundance of optimization algorithms are available for which both the convergence properties and the numerical performances are known. This clear, friendly, and rigorous exposition discusses the theory behind the nonlinear optimization algorithms for understanding their properties and their convergence, enabling the reader to prove the convergence of his/her own algorithms. It covers cases and computational performances of the most known modern nonlinear optimization algorithms that solve collections of unconstrained and constrained optimization test problems with different structures, complexities, as well as those with large-scale real applications.. The book is addressed to all those interested in developing and using new advanced techniques for solving large-scale unconstrained or constrained complex optimization problems. Mathematical programming researchers, theoretic
出版日期Book 2022
关键词unconstrained optimization; stepsize computation; steepest descent method; Newton method; conjugate grad
版次1
doihttps://doi.org/10.1007/978-3-031-08720-2
isbn_softcover978-3-031-08722-6
isbn_ebook978-3-031-08720-2Series ISSN 1931-6828 Series E-ISSN 1931-6836
issn_series 1931-6828
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Modern Numerical Nonlinear Optimization影响因子(影响力)




书目名称Modern Numerical Nonlinear Optimization影响因子(影响力)学科排名




书目名称Modern Numerical Nonlinear Optimization网络公开度




书目名称Modern Numerical Nonlinear Optimization网络公开度学科排名




书目名称Modern Numerical Nonlinear Optimization被引频次




书目名称Modern Numerical Nonlinear Optimization被引频次学科排名




书目名称Modern Numerical Nonlinear Optimization年度引用




书目名称Modern Numerical Nonlinear Optimization年度引用学科排名




书目名称Modern Numerical Nonlinear Optimization读者反馈




书目名称Modern Numerical Nonlinear Optimization读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:49:19 | 显示全部楼层
发表于 2025-3-22 00:27:51 | 显示全部楼层
发表于 2025-3-22 05:44:47 | 显示全部楼层
发表于 2025-3-22 09:10:19 | 显示全部楼层
发表于 2025-3-22 15:40:11 | 显示全部楼层
发表于 2025-3-22 19:47:00 | 显示全部楼层
Modern Numerical Nonlinear Optimization978-3-031-08720-2Series ISSN 1931-6828 Series E-ISSN 1931-6836
发表于 2025-3-22 23:33:31 | 显示全部楼层
1931-6828 are currently the most valuable for solving real-life proble.This book includes a thorough theoretical and computational analysis of unconstrained and constrained optimization algorithms and combines and integrates the most recent techniques and advanced computational linear algebra methods. Nonline
发表于 2025-3-23 04:32:55 | 显示全部楼层
Book 2022ates the most recent techniques and advanced computational linear algebra methods. Nonlinear optimization methods and techniques have reached their maturity and an abundance of optimization algorithms are available for which both the convergence properties and the numerical performances are known. T
发表于 2025-3-23 08:10:08 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 02:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表