书目名称 | Modern Differential Geometry in Gauge Theories | 副标题 | Yang–Mills Fields, V | 编辑 | Anastasios Mallios | 视频video | | 概述 | Original, well-written work of interest.Presents for the first time (physical) field theories written in sheaf-theoretic language.Contains a wealth of minutely detailed, rigorous computations, ususall | 图书封面 |  | 描述 | .Differential geometry, in the classical sense, is developed through the theory of smooth manifolds. Modern differential geometry from the author’s perspective is used in this work to describe physical theories of a geometric character without using any notion of calculus (smoothness). Instead, an axiomatic treatment of differential geometry is presented via sheaf theory (geometry) and sheaf cohomology (analysis). Using vector sheaves, in place of bundles, based on arbitrary topological spaces, this unique approach in general furthers new perspectives and calculations that generate unexpected potential applications...Modern Differential Geometry in Gauge Theories is a two-volume research monograph that systematically applies a sheaf-theoretic approach to such physical theories as gauge theory. Volume 1 focused on Maxwell fields. Continuing in Volume II, the author extends the application of his sheaf-theoretic approach to Yang–Mills fields in general. The text contains a wealthof detailed and rigorous computations and will appeal to mathematicians and physicists, along with advanced undergraduate and graduate students, interested in applications of differential geometry to physical | 出版日期 | Book 2010 | 关键词 | A-Connections; Gauge Potential; Gauge theory; Laplace–Beltrami Operators; Local Characterization; Moduli | 版次 | 1 | doi | https://doi.org/10.1007/978-0-8176-4634-9 | isbn_softcover | 978-0-8176-4379-9 | isbn_ebook | 978-0-8176-4634-9 | copyright | Birkh�user Boston 2010 |
The information of publication is updating
|
|