找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Modern Deep Learning for Tabular Data; Novel Approaches to Andre Ye,Zian Wang Book 2023 Andre Ye and Zian Wang 2023 Deep Learning.Tabular

[复制链接]
查看: 16376|回复: 35
发表于 2025-3-21 17:53:29 | 显示全部楼层 |阅读模式
书目名称Modern Deep Learning for Tabular Data
副标题Novel Approaches to
编辑Andre Ye,Zian Wang
视频video
概述Explains deep learning applications to tabular data, documenting novel methods and techniques.Exposes and synthesizes lesser-known deep learning tools and techniques backed by recent research.Apply co
图书封面Titlebook: Modern Deep Learning for Tabular Data; Novel Approaches to  Andre Ye,Zian Wang Book 2023 Andre Ye and Zian Wang 2023 Deep Learning.Tabular
描述.Deep learning is one of the most powerful tools in the modern artificial intelligence landscape. While having been predominantly applied to highly specialized image, text, and signal datasets, this book synthesizes and presents novel deep learning approaches to a seemingly unlikely domain – tabular data. Whether for finance, business, security, medicine, or countless other domain, deep learning can help mine and model complex patterns in tabular data – an incredibly ubiquitous form of structured data...Part I of the book offers a rigorous overview of machine learning principles, algorithms, and implementation skills relevant to holistically modeling and manipulating tabular data. Part II studies five dominant deep learning model designs – Artificial Neural Networks, Convolutional Neural Networks, Recurrent Neural Networks, Attention and Transformers, and Tree-Rooted Networks – through both their ‘default’ usage and their application to tabular data. Part III compounds the power of the previously covered methods by surveying strategies and techniques to supercharge deep learning systems: autoencoders, deep data generation, meta-optimization, multi-model arrangement, and neural netw
出版日期Book 2023
关键词Deep Learning; Tabular Data; Machine Learning; Neural Network; Recurrent Neural Networks; Convolutional N
版次1
doihttps://doi.org/10.1007/978-1-4842-8692-0
isbn_softcover978-1-4842-8691-3
isbn_ebook978-1-4842-8692-0
copyrightAndre Ye and Zian Wang 2023
The information of publication is updating

书目名称Modern Deep Learning for Tabular Data影响因子(影响力)




书目名称Modern Deep Learning for Tabular Data影响因子(影响力)学科排名




书目名称Modern Deep Learning for Tabular Data网络公开度




书目名称Modern Deep Learning for Tabular Data网络公开度学科排名




书目名称Modern Deep Learning for Tabular Data被引频次




书目名称Modern Deep Learning for Tabular Data被引频次学科排名




书目名称Modern Deep Learning for Tabular Data年度引用




书目名称Modern Deep Learning for Tabular Data年度引用学科排名




书目名称Modern Deep Learning for Tabular Data读者反馈




书目名称Modern Deep Learning for Tabular Data读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:40:09 | 显示全部楼层
发表于 2025-3-22 01:57:56 | 显示全部楼层
发表于 2025-3-22 05:04:44 | 显示全部楼层
http://image.papertrans.cn/m/image/637082.jpg
发表于 2025-3-22 12:20:30 | 显示全部楼层
发表于 2025-3-22 15:10:16 | 显示全部楼层
发表于 2025-3-22 20:12:02 | 显示全部楼层
wer of the previously covered methods by surveying strategies and techniques to supercharge deep learning systems: autoencoders, deep data generation, meta-optimization, multi-model arrangement, and neural netw978-1-4842-8691-3978-1-4842-8692-0
发表于 2025-3-22 21:48:13 | 显示全部楼层
发表于 2025-3-23 03:36:22 | 显示全部楼层
Passive Filters,gher-order Butterworth, Chebyshev and Elliptic low-pass filters are handled using published design tables then high-pass and band-pass filters are derived by transformation, and the chapter concludes with all-pass filters.
发表于 2025-3-23 08:50:52 | 显示全部楼层
,Trägheit und Energie,atz von der Erhaltung der Energie. Schließlich verschmelzen für moderne, relativistische Betrachtung auch noch Impuls- und Energiesatz zu einer Einheit. Diese Verschmelzungen bilden das Thema der folgenden Ausführungen.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 10:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表