找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Modern Algorithms for Image Processing; Computer Imagery by Vladimir Kovalevsky Book 2019 Vladimir Kovalevsky 2019 image processing.C#.ima

[复制链接]
查看: 15498|回复: 35
发表于 2025-3-21 18:30:10 | 显示全部楼层 |阅读模式
书目名称Modern Algorithms for Image Processing
副标题Computer Imagery by
编辑Vladimir Kovalevsky
视频videohttp://file.papertrans.cn/637/636902/636902.mp4
概述Teaches efficient methods of digital image processing that can be used for improving the quality of images and for recognizing and measuring objects.Provides project source code you can immediately us
图书封面Titlebook: Modern Algorithms for Image Processing; Computer Imagery by  Vladimir Kovalevsky Book 2019 Vladimir Kovalevsky 2019 image processing.C#.ima
描述.Utilize modern methods for digital image processing and take advantage of the many time-saving templates provided for all of the projects in this book..Modern Algorithms for Image Processing. approaches the topic of image processing through teaching by example. Throughout the book, you will create projects that resolve typical problems that you might encounter in the world of digital image processing. Some projects teach you methods for addressing the quality of images, such as reducing random errors or noise and suppressing pulse noise (salt and pepper), a method valuable for improving the quality of historical images. Other methods detail how to correct inhomogeneous illumination, not by means of subtracting the mean illumination, but through division, a far more efficient method. Additional projects cover contrasting, and a process for edge detection, more efficient than Canny‘s, for detecting edges in color images directly, without converting them into black and white images..What You‘ll Learn.Apply innovative methods for suppressing pulse noise, enhancing contrast, and edge detection.Know the pros and cons of enlisting a particular method.Use new approaches for image compress
出版日期Book 2019
关键词image processing; C#; image improvements; noise reduction; shading correction; edge detection; thresholdin
版次1
doihttps://doi.org/10.1007/978-1-4842-4237-7
isbn_softcover978-1-4842-4236-0
isbn_ebook978-1-4842-4237-7
copyrightVladimir Kovalevsky 2019
The information of publication is updating

书目名称Modern Algorithms for Image Processing影响因子(影响力)




书目名称Modern Algorithms for Image Processing影响因子(影响力)学科排名




书目名称Modern Algorithms for Image Processing网络公开度




书目名称Modern Algorithms for Image Processing网络公开度学科排名




书目名称Modern Algorithms for Image Processing被引频次




书目名称Modern Algorithms for Image Processing被引频次学科排名




书目名称Modern Algorithms for Image Processing年度引用




书目名称Modern Algorithms for Image Processing年度引用学科排名




书目名称Modern Algorithms for Image Processing读者反馈




书目名称Modern Algorithms for Image Processing读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:44:13 | 显示全部楼层
发表于 2025-3-22 00:51:55 | 显示全部楼层
Vladimir KovalevskyTeaches efficient methods of digital image processing that can be used for improving the quality of images and for recognizing and measuring objects.Provides project source code you can immediately us
发表于 2025-3-22 04:52:07 | 显示全部楼层
发表于 2025-3-22 12:14:48 | 显示全部楼层
https://doi.org/10.1007/978-1-4842-4237-7image processing; C#; image improvements; noise reduction; shading correction; edge detection; thresholdin
发表于 2025-3-22 13:49:31 | 显示全部楼层
978-1-4842-4236-0Vladimir Kovalevsky 2019
发表于 2025-3-22 18:26:29 | 显示全部楼层
发表于 2025-3-22 22:40:23 | 显示全部楼层
发表于 2025-3-23 04:51:46 | 显示全部楼层
,Integrable Nonlocal , Symmetric and Reverse Space-Time Nonlinear Schrödinger Equations, symmetric, reverse space-time and reverse time only NLS equations are also discussed. Starting from the Ablowitz-Ladik scattering problem, it is shown that all these discrete models arise from simple symmetry reductions.
发表于 2025-3-23 07:43:05 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 12:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表