找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Model Selection and Error Estimation in a Nutshell; Luca Oneto Book 2020 Springer Nature Switzerland AG 2020 Statistical Learning Theory.E

[复制链接]
查看: 42886|回复: 35
发表于 2025-3-21 16:21:55 | 显示全部楼层 |阅读模式
书目名称Model Selection and Error Estimation in a Nutshell
编辑Luca Oneto
视频video
概述Reviews the main approaches to problems of model selection and error estimation.Simplifies most of the technical aspects focusing on the applicability of the approaches.Presents the intuitions behind
丛书名称Modeling and Optimization in Science and Technologies
图书封面Titlebook: Model Selection and Error Estimation in a Nutshell;  Luca Oneto Book 2020 Springer Nature Switzerland AG 2020 Statistical Learning Theory.E
描述.How can we select the best performing data-driven model? How can we rigorously estimate its generalization error? Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80’s and includes the most recent results. It discusses open problems and outlines future directions for research..
出版日期Book 2020
关键词Statistical Learning Theory; Empirical Data; Model Selection; Error Estimation; Resampling Methods; Compl
版次1
doihttps://doi.org/10.1007/978-3-030-24359-3
isbn_softcover978-3-030-24361-6
isbn_ebook978-3-030-24359-3Series ISSN 2196-7326 Series E-ISSN 2196-7334
issn_series 2196-7326
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Model Selection and Error Estimation in a Nutshell影响因子(影响力)




书目名称Model Selection and Error Estimation in a Nutshell影响因子(影响力)学科排名




书目名称Model Selection and Error Estimation in a Nutshell网络公开度




书目名称Model Selection and Error Estimation in a Nutshell网络公开度学科排名




书目名称Model Selection and Error Estimation in a Nutshell被引频次




书目名称Model Selection and Error Estimation in a Nutshell被引频次学科排名




书目名称Model Selection and Error Estimation in a Nutshell年度引用




书目名称Model Selection and Error Estimation in a Nutshell年度引用学科排名




书目名称Model Selection and Error Estimation in a Nutshell读者反馈




书目名称Model Selection and Error Estimation in a Nutshell读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:08:07 | 显示全部楼层
Model Selection and Error Estimation in a Nutshell
发表于 2025-3-22 01:40:44 | 显示全部楼层
Book 2020tatistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80’s and includes the most recent results. It discusses open problems and outlines future directions for research..
发表于 2025-3-22 05:21:38 | 显示全部楼层
Book 2020 these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only
发表于 2025-3-22 10:16:03 | 显示全部楼层
发表于 2025-3-22 16:23:21 | 显示全部楼层
发表于 2025-3-22 18:23:41 | 显示全部楼层
发表于 2025-3-22 23:49:15 | 显示全部楼层
Model Selection and Error Estimation in a Nutshell978-3-030-24359-3Series ISSN 2196-7326 Series E-ISSN 2196-7334
发表于 2025-3-23 02:12:49 | 显示全部楼层
发表于 2025-3-23 09:05:49 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-29 05:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表