找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Model Based Inference in the Life Sciences; A Primer on Evidence David R. Anderson Textbook 2008 Springer-Verlag New York 2008 Akaike’s inf

[复制链接]
查看: 23314|回复: 35
发表于 2025-3-21 19:06:12 | 显示全部楼层 |阅读模式
书目名称Model Based Inference in the Life Sciences
副标题A Primer on Evidence
编辑David R. Anderson
视频video
概述Very broad applicability, very science-based, and practical.Very powerful – the concept of formal “strength of evidence”.Simple to use and understand.An emphasis on science philosophy, not just “data
图书封面Titlebook: Model Based Inference in the Life Sciences; A Primer on Evidence David R. Anderson Textbook 2008 Springer-Verlag New York 2008 Akaike’s inf
描述.The abstract concept of “information” can be quantified and this has led to many important advances in the analysis of data in the empirical sciences. This text focuses on a science philosophy based on “multiple working hypotheses” and statistical models to represent them. The fundamental science question relates to the empirical evidence for hypotheses in this set—a formal strength of evidence. Kullback-Leibler information is the information lost when a model is used to approximate full reality. Hirotugu Akaike found a link between K-L information (a cornerstone of information theory) and the maximized log-likelihood (a cornerstone of mathematical statistics). This combination has become the basis for a new paradigm in model based inference. The text advocates formal inference from all the hypotheses/models in the a priori set—multimodel inference...This compelling approach allows a simple ranking of the science hypothesis and their models. Simple methods are introduced for computing the likelihood of model .i,. given the data; the probability of model .i., given the data; and evidence ratios. These quantities represent a formal strength of evidence and are easy to compute and un
出版日期Textbook 2008
关键词Akaike’s information criterion AIC; Master Patient Index; Model based inference; Quantitative evidence;
版次1
doihttps://doi.org/10.1007/978-0-387-74075-1
isbn_softcover978-0-387-74073-7
isbn_ebook978-0-387-74075-1
copyrightSpringer-Verlag New York 2008
The information of publication is updating

书目名称Model Based Inference in the Life Sciences影响因子(影响力)




书目名称Model Based Inference in the Life Sciences影响因子(影响力)学科排名




书目名称Model Based Inference in the Life Sciences网络公开度




书目名称Model Based Inference in the Life Sciences网络公开度学科排名




书目名称Model Based Inference in the Life Sciences被引频次




书目名称Model Based Inference in the Life Sciences被引频次学科排名




书目名称Model Based Inference in the Life Sciences年度引用




书目名称Model Based Inference in the Life Sciences年度引用学科排名




书目名称Model Based Inference in the Life Sciences读者反馈




书目名称Model Based Inference in the Life Sciences读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:09:26 | 显示全部楼层
发表于 2025-3-22 04:06:34 | 显示全部楼层
发表于 2025-3-22 04:58:28 | 显示全部楼层
发表于 2025-3-22 10:26:09 | 显示全部楼层
http://image.papertrans.cn/m/image/635717.jpg
发表于 2025-3-22 15:44:11 | 显示全部楼层
https://doi.org/10.1007/978-0-387-74075-1Akaike’s information criterion AIC; Master Patient Index; Model based inference; Quantitative evidence;
发表于 2025-3-22 20:04:01 | 显示全部楼层
978-0-387-74073-7Springer-Verlag New York 2008
发表于 2025-3-22 21:41:19 | 显示全部楼层
David R. AndersonVery broad applicability, very science-based, and practical.Very powerful – the concept of formal “strength of evidence”.Simple to use and understand.An emphasis on science philosophy, not just “data
发表于 2025-3-23 04:05:17 | 显示全部楼层
A Unifying Semantics for Causal Ramificationsh [.]. There are indications that these and other different augmented preferential semantical approaches can by unified into a general framework, and provide the unified semantics that is lacking so far.
发表于 2025-3-23 05:31:57 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 18:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表