找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Metaheuristic Clustering; Swagatam Das,Ajith Abraham,Amit Konar Book 2009 Springer-Verlag Berlin Heidelberg 2009 algorithms.data mining.ev

[复制链接]
查看: 7464|回复: 35
发表于 2025-3-21 18:21:11 | 显示全部楼层 |阅读模式
书目名称Metaheuristic Clustering
编辑Swagatam Das,Ajith Abraham,Amit Konar
视频video
概述Latest research on metaheuristic clustering
丛书名称Studies in Computational Intelligence
图书封面Titlebook: Metaheuristic Clustering;  Swagatam Das,Ajith Abraham,Amit Konar Book 2009 Springer-Verlag Berlin Heidelberg 2009 algorithms.data mining.ev
描述.Cluster analysis means the organization of an unlabeled collection of objects or patterns into separate groups based on their similarity. The task of computerized data clustering has been approached from diverse domains of knowledge like graph theory, multivariate analysis, neural networks, fuzzy set theory, and so on. Clustering is often described as an unsupervised learning method but most of the traditional algorithms require a prior specification of the number of clusters in the data for guiding the partitioning process, thus making it not completely unsupervised. Modern data mining tools that predict future trends and behaviors for allowing businesses to make proactive and knowledge-driven decisions, demand fast and fully automatic clustering of very large datasets with minimal or no user intervention. ..In this volume, we formulate clustering as an optimization problem, where the best partitioning of a given dataset is achieved by minimizing/maximizing one (single-objective clustering) or more (multi-objective clustering) objective functions. Using several real world applications, we illustrate the performance of several metaheuristics, particularly the Differential Evolutio
出版日期Book 2009
关键词algorithms; data mining; evolution; heuristics; kernel; knowledge; learning; metaheuristic; modeling; neural
版次1
doihttps://doi.org/10.1007/978-3-540-93964-1
isbn_softcover978-3-642-10071-0
isbn_ebook978-3-540-93964-1Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

书目名称Metaheuristic Clustering影响因子(影响力)




书目名称Metaheuristic Clustering影响因子(影响力)学科排名




书目名称Metaheuristic Clustering网络公开度




书目名称Metaheuristic Clustering网络公开度学科排名




书目名称Metaheuristic Clustering被引频次




书目名称Metaheuristic Clustering被引频次学科排名




书目名称Metaheuristic Clustering年度引用




书目名称Metaheuristic Clustering年度引用学科排名




书目名称Metaheuristic Clustering读者反馈




书目名称Metaheuristic Clustering读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:48:03 | 显示全部楼层
Conclusions and Future Research,the possible evolution of the proposed methods for handling clusters of non-spherical and shell type shapes, co-clustering and the problem of integrating together a feature selection module and a clustering module under the framework of Differential Evolution (DE).
发表于 2025-3-22 02:55:28 | 显示全部楼层
发表于 2025-3-22 07:18:15 | 显示全部楼层
,Metaheuristic Pattern Clustering – An Overview,computing in pattern clustering and outlines the most promising evolutionary clustering methods. The chapter ends with a discussion on the automatic clustering problem, which remains largely unsolved by most of the traditional clustering algorithms.
发表于 2025-3-22 08:51:49 | 显示全部楼层
发表于 2025-3-22 13:47:09 | 显示全部楼层
Automatic Hard Clustering Using Improved Differential Evolution Algorithm,nal clustering techniques and one popular hierarchical clustering algorithm. The partitional clustering algorithms are based on Genetic Algorithm (GA) and the Particle Swarm Optimization (PSO) algorithm. An interesting practical application of the proposed method to automatic segmentation of images is also illustrated.
发表于 2025-3-22 19:10:04 | 显示全部楼层
发表于 2025-3-23 01:03:28 | 显示全部楼层
发表于 2025-3-23 03:44:14 | 显示全部楼层
发表于 2025-3-23 09:08:39 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 15:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表