找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Meshfree Methods for Partial Differential Equations; Michael Griebel,Marc Alexander Schweitzer Conference proceedings 2003 Springer-Verlag

[复制链接]
楼主: Daidzein
发表于 2025-3-30 11:34:02 | 显示全部楼层
An Adaptivity Procedure Based on the Gradient of Strain Energy Density and its Application in Meshl as a stop-criterion. The refinement-coarsening is guided by the gradient of strain energy density. The procedure is then implemented in Element-Free Galerkin method. Numerical examples are presented to show the performance of the proposed procedure.
发表于 2025-3-30 15:18:19 | 显示全部楼层
New Developments in Smoothed Particle Hydrodynamics,se methods is that the interpolation uses a set of disordered points and the equations of motion appear similar to the equations of motion of a set of particles. The generic name, Smoothed Particle methods seems to capture these features nicely. A useful review of SPH (Monaghan (1992)) gives the bas
发表于 2025-3-30 19:29:23 | 显示全部楼层
发表于 2025-3-30 21:01:14 | 显示全部楼层
发表于 2025-3-31 04:34:10 | 显示全部楼层
发表于 2025-3-31 07:00:23 | 显示全部楼层
https://doi.org/10.1007/978-3-642-56103-0Regression; Simulation; differential equation; element-free Galerkin methodse; engineering applications;
发表于 2025-3-31 12:44:06 | 显示全部楼层
Michael Griebel,Marc Alexander SchweitzerIncludes supplementary material:
发表于 2025-3-31 17:21:36 | 显示全部楼层
发表于 2025-3-31 21:13:59 | 显示全部楼层
Coupling Finite Elements and Particles for Adaptivity: An Application to Consistently Stabilized Cout remeshing cost. The distribution of particles can be arbitrary. Continuity and consistency is preserved. The behaviour of the mixed interpolation in the resolution of the convection-diffusion equation is analyzed.
发表于 2025-3-31 23:02:17 | 显示全部楼层
A Hamiltonian Particle-Mesh Method for the Rotating Shallow-Water Equations,n circulation theorem. The generation of non-smooth components in the layer-depth is avoided by applying a smoothing operator similar to what has recently been discussed in the context of α-Euler models.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 00:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表